582 research outputs found
Diffuse Hard X-ray Sources Discovered with the ASCA Galactic Plane Survey
We found diffuse hard X-ray sources, G11.0+0.0, G25.5+0.0, and G26.6-0.1 in
the ASCA Galactic plane survey data. The X-ray spectra are featureless with no
emission line, and are fitted with both models of a thin thermal plasma in
non-equilibrium ionization and a power-law function. The source distances are
estimated to be 1-8 kpc, using the best-fit NH values on the assumption that
the mean density in the line of sight is 1 H cm^-3. The source sizes and
luminosities are then 4.5-27 pc and (0.8-23)x10^33 ergs/s. Although the source
sizes are typical to supernova remnants (SNR) with young to intermediate ages,
the X-ray luminosity, plasma temperature, and weak emission lines in the
spectra are all unusual. This suggests that these objects are either shell-like
SNRs dominated by X-ray synchrotron emission, like SN 1006, or, alternatively,
plerionic SNRs. The total number of these classes of SNRs in our Galaxy is also
estimated.Comment: 17 pages, 9 figures; to appear in Ap
Dark Viscous Fluid coupled with Dark Matter and future singularity
We study effects of viscous fluid coupled with dark matter in our universe.
We consider bulk viscosity in the cosmic fluid and we suppose the existence of
a coupling between fluid and dark matter, in order to reproduce a stable de
Sitter universe protected against future-time singularities. More general
inhomogeneous fluids are studied related to future singularities.Comment: 11 page
Nonlocal Gravitational Models and Exact Solutions
A nonlocal gravity model with a function , where is
the d'Alembert operator, is considered. The algorithm, allowing to reconstruct
, corresponding to the given Hubble parameter and the state
parameter of the matter, is proposed. Using this algorithm, we find the
functions , corresponding to de Sitter solutions.Comment: 5 pages, v2: refs. added, to appear in the proceedings of the
International Workshop "Supersymmetries and Quantum Symmetries" (SQS'2011),
Dubna, Russia, July 18-23, 2011, http://theor.jinr.ru/sqs/2011
Conformal transformation in theories
It is well-known that theories are dynamically equivalent to a
particular class of scalar-tensor theories. In analogy to the extension
of the Einstein-Hilbert action of general relativity, theories are
generalizations of the action of teleparallel gravity. The field equations are
always second order, remarkably simpler than theories. It is interesting
to investigate whether theories have the similar conformal features
possessed in theories. It is shown, however, that theories are
not dynamically equivalent to teleparallel action plus a scalar field via
conformal transformation, there appears an additional scalar-torsion coupling
term. We discuss briefly what constraint of this coupling term may be put on
theories from observations of the solar system.Comment: 4 pages, Revision to be publishe
Gravitational Waves in Viable f(R) Models
We study gravitational waves in viable theories under a non-zero
background curvature. In general, an theory contains an extra scalar
degree of freedom corresponding to a massive scalar mode of gravitational wave.
For viable models, since there always exits a de-Sitter point where the
background curvature in vacuum is non-zero, the mass squared of the scalar mode
of gravitational wave is about the de-Sitter point curvature
. We illustrate our results in two types of viable
models: the exponential gravity and Starobinsky models. In both cases,
the mass will be in the order of when it propagates in vacuum.
However, in the presence of matter density in galaxy, the scalar mode can be
heavy. Explicitly, in the exponential gravity model, the mass becomes almost
infinity, implying the disappearance of the scalar mode of gravitational wave,
while the Starobinsky model gives the lowest mass around ,
corresponding to the lowest frequency of Hz, which may be detected by
the current and future gravitational wave probes, such as LISA and ASTROD-GW.Comment: 18 pages, 6 figures, several statements and references adde
Future of the universe in modified gravitational theories: Approaching to the finite-time future singularity
We investigate the future evolution of the dark energy universe in modified
gravities including gravity, string-inspired scalar-Gauss-Bonnet and
modified Gauss-Bonnet ones, and ideal fluid with the inhomogeneous equation of
state (EoS). Modified Friedmann-Robertson-Walker (FRW) dynamics for all these
theories may be presented in universal form by using the effective ideal fluid
with an inhomogeneous EoS without specifying its explicit form. We construct
several examples of the modified gravity which produces accelerating
cosmologies ending at the finite-time future singularity of all four known
types by applying the reconstruction program. Some scenarios to resolve the
finite-time future singularity are presented. Among these scenarios, the most
natural one is related with additional modification of the gravitational action
in the early universe. In addition, late-time cosmology in the non-minimal
Maxwell-Einstein theory is considered. We investigate the forms of the
non-minimal gravitational coupling which generates the finite-time future
singularities and the general conditions for this coupling in order that the
finite-time future singularities cannot emerge. Furthermore, it is shown that
the non-minimal gravitational coupling can remove the finite-time future
singularities or make the singularity stronger (or weaker) in modified gravity.Comment: 25 pages, no figure, title changed, accepted in JCA
Qualitative study in Loop Quantum Cosmology
This work contains a detailed qualitative analysis, in General Relativity and
in Loop Quantum Cosmology, of the dynamics in the associated phase space of a
scalar field minimally coupled with gravity, whose potential mimics the
dynamics of a perfect fluid with a linear Equation of State (EoS). Dealing with
the orbits (solutions) of the system, we will see that there are analytic ones,
which lead to the same dynamics as the perfect fluid, and our goal is to check
their stability, depending on the value of the EoS parameter, i.e., to show
whether the other orbits converge or diverge to these analytic solutions at
early and late times.Comment: 12 pages, 7 figures. Version accepted for publication in CQ
Universal upper limit on inflation energy scale from cosmic magnetic field
Recently observational lower bounds on the strength of cosmic magnetic fields
were reported, based on gamma-ray flux from distant blazars. If inflation is
responsible for the generation of such magnetic fields then the inflation
energy scale is bounded from above as rho_{inf}^{1/4} < 2.5 times 10^{-7}M_{Pl}
times (B_{obs}/10^{-15}G)^{-2} in a wide class of inflationary magnetogenesis
models, where B_{obs} is the observed strength of cosmic magnetic fields. The
tensor-to-scalar ratio is correspondingly constrained as r< 10^{-19} times
(B_{obs}/10^{-15}G)^{-8}. Therefore, if the reported strength B_{obs} \geq
10^{-15}G is confirmed and if any signatures of gravitational waves from
inflation are detected in the near future, then our result indicates some
tensions between inflationary magnetogenesis and observations.Comment: 12pages, v2: several discussions and references added, version
accepted for publication by JCA
Screening of cosmological constant for De Sitter Universe in non-local gravity, phantom-divide crossing and finite-time future singularities
We investigate de Sitter solutions in non-local gravity as well as in
non-local gravity with Lagrange constraint multiplier. We examine a condition
to avoid a ghost and discuss a screening scenario for a cosmological constant
in de Sitter solutions. Furthermore, we explicitly demonstrate that three types
of the finite-time future singularities can occur in non-local gravity and
explore their properties. In addition, we evaluate the effective equation of
state for the universe and show that the late-time accelerating universe may be
effectively the quintessence, cosmological constant or phantom-like phases. In
particular, it is found that there is a case in which a crossing of the phantom
divide from the non-phantom (quintessence) phase to the phantom one can be
realized when a finite-time future singularity occurs. Moreover, it is
demonstrated that the addition of an term can cure the finite-time future
singularities in non-local gravity. It is also suggested that in the framework
of non-local gravity, adding an term leads to possible unification of the
early-time inflation with the late-time cosmic acceleration.Comment: 42 pages, no figure, version accepted for publication in General
Relativity and Gravitatio
Accelerating universe from F(T) gravity
It is shown that the acceleration of the universe can be understood by
considering a F(T) gravity models. For these F(T) gravity models, a variant of
the accelerating cosmology reconstruction program is developed. Some explicit
examples of F(T) are reconstructed from the background FRW expansion history.Comment: 13 pages, references adde
- …