582 research outputs found

    Diffuse Hard X-ray Sources Discovered with the ASCA Galactic Plane Survey

    Full text link
    We found diffuse hard X-ray sources, G11.0+0.0, G25.5+0.0, and G26.6-0.1 in the ASCA Galactic plane survey data. The X-ray spectra are featureless with no emission line, and are fitted with both models of a thin thermal plasma in non-equilibrium ionization and a power-law function. The source distances are estimated to be 1-8 kpc, using the best-fit NH values on the assumption that the mean density in the line of sight is 1 H cm^-3. The source sizes and luminosities are then 4.5-27 pc and (0.8-23)x10^33 ergs/s. Although the source sizes are typical to supernova remnants (SNR) with young to intermediate ages, the X-ray luminosity, plasma temperature, and weak emission lines in the spectra are all unusual. This suggests that these objects are either shell-like SNRs dominated by X-ray synchrotron emission, like SN 1006, or, alternatively, plerionic SNRs. The total number of these classes of SNRs in our Galaxy is also estimated.Comment: 17 pages, 9 figures; to appear in Ap

    Dark Viscous Fluid coupled with Dark Matter and future singularity

    Full text link
    We study effects of viscous fluid coupled with dark matter in our universe. We consider bulk viscosity in the cosmic fluid and we suppose the existence of a coupling between fluid and dark matter, in order to reproduce a stable de Sitter universe protected against future-time singularities. More general inhomogeneous fluids are studied related to future singularities.Comment: 11 page

    Nonlocal Gravitational Models and Exact Solutions

    Full text link
    A nonlocal gravity model with a function f(1R)f(\Box^{-1} R), where \Box is the d'Alembert operator, is considered. The algorithm, allowing to reconstruct f(1R)f(\Box^{-1} R), corresponding to the given Hubble parameter and the state parameter of the matter, is proposed. Using this algorithm, we find the functions f(1R)f(\Box^{-1} R), corresponding to de Sitter solutions.Comment: 5 pages, v2: refs. added, to appear in the proceedings of the International Workshop "Supersymmetries and Quantum Symmetries" (SQS'2011), Dubna, Russia, July 18-23, 2011, http://theor.jinr.ru/sqs/2011

    Conformal transformation in f(T)f(T) theories

    Full text link
    It is well-known that f(R)f(R) theories are dynamically equivalent to a particular class of scalar-tensor theories. In analogy to the f(R)f(R) extension of the Einstein-Hilbert action of general relativity, f(T)f(T) theories are generalizations of the action of teleparallel gravity. The field equations are always second order, remarkably simpler than f(R)f(R) theories. It is interesting to investigate whether f(T)f(T) theories have the similar conformal features possessed in f(R)f(R) theories. It is shown, however, that f(T)f(T) theories are not dynamically equivalent to teleparallel action plus a scalar field via conformal transformation, there appears an additional scalar-torsion coupling term. We discuss briefly what constraint of this coupling term may be put on f(T)f(T) theories from observations of the solar system.Comment: 4 pages, Revision to be publishe

    Gravitational Waves in Viable f(R) Models

    Full text link
    We study gravitational waves in viable f(R)f(R) theories under a non-zero background curvature. In general, an f(R)f(R) theory contains an extra scalar degree of freedom corresponding to a massive scalar mode of gravitational wave. For viable f(R)f(R) models, since there always exits a de-Sitter point where the background curvature in vacuum is non-zero, the mass squared of the scalar mode of gravitational wave is about the de-Sitter point curvature Rd1066eV2R_{d}\sim10^{-66}eV^{2}. We illustrate our results in two types of viable f(R)f(R) models: the exponential gravity and Starobinsky models. In both cases, the mass will be in the order of 1033eV10^{-33}eV when it propagates in vacuum. However, in the presence of matter density in galaxy, the scalar mode can be heavy. Explicitly, in the exponential gravity model, the mass becomes almost infinity, implying the disappearance of the scalar mode of gravitational wave, while the Starobinsky model gives the lowest mass around 1024eV10^{-24}eV, corresponding to the lowest frequency of 10910^{-9} Hz, which may be detected by the current and future gravitational wave probes, such as LISA and ASTROD-GW.Comment: 18 pages, 6 figures, several statements and references adde

    Future of the universe in modified gravitational theories: Approaching to the finite-time future singularity

    Full text link
    We investigate the future evolution of the dark energy universe in modified gravities including F(R)F(R) gravity, string-inspired scalar-Gauss-Bonnet and modified Gauss-Bonnet ones, and ideal fluid with the inhomogeneous equation of state (EoS). Modified Friedmann-Robertson-Walker (FRW) dynamics for all these theories may be presented in universal form by using the effective ideal fluid with an inhomogeneous EoS without specifying its explicit form. We construct several examples of the modified gravity which produces accelerating cosmologies ending at the finite-time future singularity of all four known types by applying the reconstruction program. Some scenarios to resolve the finite-time future singularity are presented. Among these scenarios, the most natural one is related with additional modification of the gravitational action in the early universe. In addition, late-time cosmology in the non-minimal Maxwell-Einstein theory is considered. We investigate the forms of the non-minimal gravitational coupling which generates the finite-time future singularities and the general conditions for this coupling in order that the finite-time future singularities cannot emerge. Furthermore, it is shown that the non-minimal gravitational coupling can remove the finite-time future singularities or make the singularity stronger (or weaker) in modified gravity.Comment: 25 pages, no figure, title changed, accepted in JCA

    Qualitative study in Loop Quantum Cosmology

    Get PDF
    This work contains a detailed qualitative analysis, in General Relativity and in Loop Quantum Cosmology, of the dynamics in the associated phase space of a scalar field minimally coupled with gravity, whose potential mimics the dynamics of a perfect fluid with a linear Equation of State (EoS). Dealing with the orbits (solutions) of the system, we will see that there are analytic ones, which lead to the same dynamics as the perfect fluid, and our goal is to check their stability, depending on the value of the EoS parameter, i.e., to show whether the other orbits converge or diverge to these analytic solutions at early and late times.Comment: 12 pages, 7 figures. Version accepted for publication in CQ

    Universal upper limit on inflation energy scale from cosmic magnetic field

    Full text link
    Recently observational lower bounds on the strength of cosmic magnetic fields were reported, based on gamma-ray flux from distant blazars. If inflation is responsible for the generation of such magnetic fields then the inflation energy scale is bounded from above as rho_{inf}^{1/4} < 2.5 times 10^{-7}M_{Pl} times (B_{obs}/10^{-15}G)^{-2} in a wide class of inflationary magnetogenesis models, where B_{obs} is the observed strength of cosmic magnetic fields. The tensor-to-scalar ratio is correspondingly constrained as r< 10^{-19} times (B_{obs}/10^{-15}G)^{-8}. Therefore, if the reported strength B_{obs} \geq 10^{-15}G is confirmed and if any signatures of gravitational waves from inflation are detected in the near future, then our result indicates some tensions between inflationary magnetogenesis and observations.Comment: 12pages, v2: several discussions and references added, version accepted for publication by JCA

    Screening of cosmological constant for De Sitter Universe in non-local gravity, phantom-divide crossing and finite-time future singularities

    Full text link
    We investigate de Sitter solutions in non-local gravity as well as in non-local gravity with Lagrange constraint multiplier. We examine a condition to avoid a ghost and discuss a screening scenario for a cosmological constant in de Sitter solutions. Furthermore, we explicitly demonstrate that three types of the finite-time future singularities can occur in non-local gravity and explore their properties. In addition, we evaluate the effective equation of state for the universe and show that the late-time accelerating universe may be effectively the quintessence, cosmological constant or phantom-like phases. In particular, it is found that there is a case in which a crossing of the phantom divide from the non-phantom (quintessence) phase to the phantom one can be realized when a finite-time future singularity occurs. Moreover, it is demonstrated that the addition of an R2R^2 term can cure the finite-time future singularities in non-local gravity. It is also suggested that in the framework of non-local gravity, adding an R2R^2 term leads to possible unification of the early-time inflation with the late-time cosmic acceleration.Comment: 42 pages, no figure, version accepted for publication in General Relativity and Gravitatio

    Accelerating universe from F(T) gravity

    Full text link
    It is shown that the acceleration of the universe can be understood by considering a F(T) gravity models. For these F(T) gravity models, a variant of the accelerating cosmology reconstruction program is developed. Some explicit examples of F(T) are reconstructed from the background FRW expansion history.Comment: 13 pages, references adde
    corecore