111 research outputs found

    The influence of perfusion solution on renal graft viability assessment

    Get PDF
    BACKGROUND: Kidneys from donors after cardiac or circulatory death are exposed to extended periods of both warm ischemia and intra-arterial cooling before organ recovery. Marshall’s hypertonic citrate (HOC) and Bretschneider’s histidine-tryptophan-ketoglutarate (HTK) preservation solutions are cheap, low viscosity preservation solutions used clinically for organ flushing. The aim of the present study was to evaluate the effects of these two solutions both on parameters used in clinical practice to assess organ viability prior to transplantation and histological evidence of ischemic injury after reperfusion. METHODS: Rodent kidneys were exposed to post-mortem warm ischemia, extended intra-arterial cooling (IAC) (up to 2 h) with preservation solution and reperfusion with either Krebs-Hensleit or whole blood in a transplant model. Control kidneys were either reperfused directly after retrieval or stored in 0.9% saline. Biochemical, immunological and histological parameters were assessed using glutathione-S-transferase (GST) enzymatic assays, polymerase chain reaction and mitochondrial electron microscopy respectively. Vascular function was assessed by supplementing the Krebs-Hensleit perfusion solution with phenylephrine to stimulate smooth muscle contraction followed by acetylcholine to trigger endothelial dependent relaxation. RESULTS: When compared with kidneys reperfused directly post mortem, 2 h of IAC significantly reduced smooth muscle contractile function, endothelial function and upregulated vascular cellular adhesion molecule type 1 (VCAM-1) independent of the preservation solution. However, GST release, vascular resistance, weight gain and histological mitochondrial injury were dependent on the preservation solution used. CONCLUSIONS: We conclude that initial machine perfusion viability tests, including ischemic vascular resistance and GST, are dependent on the perfusion solution used during in situ cooling. HTK-perfused kidneys will be heavier, have higher GST readings and yet reduced mitochondrial ischemic injury when compared with HOC-perfused kidneys. Clinicians should be aware of this when deciding which kidneys to transplant or discard

    Evaluation of sub-optimal renal grafts and assessment of viability prior to transplantation

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:DXN064589 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Utilization of suboptimal kidney donors

    No full text

    TWN-RENCOD: A novel method for protein binding site comparison

    No full text
    Several diverse proteins possess similar binding sites. Protein binding site comparison provides valuable insights for the drug discovery and development. Binding site similarities are useful in understanding polypharmacology, identifying potential off-targets and repurposing of known drugs. Many binding site analysis and comparison methods are available today, however, these methods may not be adequate to explain variation in the activity of a drug or a small molecule against a number of similar proteins. Water molecules surrounding the protein surface contribute to structure and function of proteins. Water molecules form diverse types of hydrogen-bonded cyclic water-ring networks known as topological water networks (TWNs). Analysis of TWNs in binding site of proteins may improve understanding of the characteristics of binding sites. We propose TWN-based residue encoding (TWN-RENCOD), a novel binding site comparison method which compares the aqueous environment in binding sites of similar proteins. As compared to other existing methods, results obtained using our method correlated better with differences in wide range of activity of a known drug (Sunitinib) against nine different protein kinases (KIT, PDGFRA, VEGFR2, PHKG2, ITK, HPK1, MST3, PAK6 and CDK2)

    The Study on the hERG Blocker Prediction Using Chemical Fingerprint Analysis

    No full text
    Human ether-a-go-go-related gene (hERG) potassium channel blockage by small molecules may cause severe cardiac side effects. Thus, it is crucial to screen compounds for activity on the hERG channels early in the drug discovery process. In this study, we collected 5299 hERG inhibitors with diverse chemical structures from a number of sources. Based on this dataset, we evaluated different machine learning (ML) and deep learning (DL) algorithms using various integer and binary type fingerprints. A training set of 3991 compounds was used to develop quantitative structure–activity relationship (QSAR) models. The performance of the developed models was evaluated using a test set of 998 compounds. Models were further validated using external set 1 (263 compounds) and external set 2 (47 compounds). Overall, models with integer type fingerprints showed better performance than models with no fingerprints, converted binary type fingerprints or original binary type fingerprints. Comparison of ML and DL algorithms revealed that integer type fingerprints are suitable for ML, whereas binary type fingerprints are suitable for DL. The outcomes of this study indicate that the rational selection of fingerprints is important for hERG blocker prediction

    TWN-FS method: A novel fragment screening method for drug discovery

    No full text
    Fragment-based drug discovery (FBDD) is a well-established and effective method for generating diverse and novel hits in drug design. Kinases are suitable targets for FBDD due to their well-defined structure. Water molecules contribute to structure and function of proteins and also influence the environment within the binding pocket. Water molecules form a variety of hydrogen-bonded cyclic water-ring networks, collectively known as topological water networks (TWNs). Analyzing the TWNs in protein binding sites can provide valuable insights into potential locations and shapes for fragments within the binding site. Here, we introduce TWN-based fragment screening (TWN-FS) method, a novel screening method that suggests fragments through grouped TWN analysis within the protein binding site. We used this method to screen known CDK2, CHK1, IGF1R and ERBB4 inhibitors. Our findings suggest that TWN-FS method has the potential to effectively screen fragments. The TWN-FS method package is available on GitHub at https://github.com/pkj0421/TWN-FS
    • …
    corecore