46 research outputs found

    Search for the Θ+\Theta^+ pentaquark in the reaction γdpKK+n\gamma d \to p K^- K^+ n

    Full text link
    A search for the \thp in the reaction γdpKK+n\gamma d \to pK^-K^+n was completed using the CLAS detector at Jefferson Lab. A study of the same reaction, published earlier, reported the observation of a narrow \thp resonance. The present experiment, with more than 30 times the integrated luminosity of our earlier measurement, does not show any evidence for a narrow pentaquark resonance. The angle-integrated upper limit on \thp production in the mass range of 1.52 to 1.56 GeV/c2^2 for the γdpKΘ+\gamma d \to pK^-\Theta^+ reaction is 0.3 nb (95% CL). This upper limit depends on assumptions made for the mass and angular distribution of \thp production. Using \lamstar production as an empirical measure of rescattering in the deuteron, the cross section upper limit for the elementary γnKΘ+\gamma n \to K^-\Theta^+ reaction is estimated to be a factor of 10 higher, {\it i.e.}, 3\sim 3 nb (95% CL).Comment: 5 figures, submitted to PRL, revised for referee comment

    Photodisintegration of 4^4He into p+t

    Full text link
    The two-body photodisintegration of 4^4He into a proton and a triton has been studied using the CEBAF Large-Acceptance Spectrometer (CLAS) at Jefferson Laboratory. Real photons produced with the Hall-B bremsstrahlung-tagging system in the energy range from 0.35 to 1.55 GeV were incident on a liquid 4^4He target. This is the first measurement of the photodisintegration of 4^4He above 0.4 GeV. The differential cross sections for the γ\gamma4^4Hept\to pt reaction have been measured as a function of photon-beam energy and proton-scattering angle, and are compared with the latest model calculations by J.-M. Laget. At 0.6-1.2 GeV, our data are in good agreement only with the calculations that include three-body mechanisms, thus confirming their importance. These results reinforce the conclusion of our previous study of the three-body breakup of 3^3He that demonstrated the great importance of three-body mechanisms in the energy region 0.5-0.8 GeV .Comment: 13 pages submitted in one tgz file containing 2 tex file and 22 postscrip figure

    π0\pi^0 photoproduction on the proton for photon energies from 0.675 to 2.875 GeV

    Full text link
    Differential cross sections for the reaction γppπ0\gamma p \to p \pi^0 have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.675 to 2.875 GeV. The results reported here possess greater accuracy in the absolute normalization than previous measurements. They disagree with recent CB-ELSA measurements for the process at forward scattering angles. Agreement with the SAID and MAID fits is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been extended to 3 GeV. Resonance couplings have been extracted and compared to previous determinations.Comment: 18 pages, 48 figure

    Exclusive ρ0\rho^0 electroproduction on the proton at CLAS

    Full text link
    The epepρ0e p\to e^\prime p \rho^0 reaction has been measured, using the 5.754 GeV electron beam of Jefferson Lab and the CLAS detector. This represents the largest ever set of data for this reaction in the valence region. Integrated and differential cross sections are presented. The WW, Q2Q^2 and tt dependences of the cross section are compared to theoretical calculations based on tt-channel meson-exchange Regge theory on the one hand and on quark handbag diagrams related to Generalized Parton Distributions (GPDs) on the other hand. The Regge approach can describe at the \approx 30% level most of the features of the present data while the two GPD calculations that are presented in this article which succesfully reproduce the high energy data strongly underestimate the present data. The question is then raised whether this discrepancy originates from an incomplete or inexact way of modelling the GPDs or the associated hard scattering amplitude or whether the GPD formalism is simply inapplicable in this region due to higher-twists contributions, incalculable at present.Comment: 29 pages, 29 figure

    First Measurement of Beam-Recoil Observables Cx and Cz in Hyperon Photoproduction

    Full text link
    Spin transfer from circularly polarized real photons to recoiling hyperons has been measured for the reactions γ+pK++Λ\vec\gamma + p \to K^+ + \vec\Lambda and γ+pK++Σ0\vec\gamma + p \to K^+ + \vec\Sigma^0. The data were obtained using the CLAS detector at Jefferson Lab for center-of-mass energies WW between 1.6 and 2.53 GeV, and for 0.85<cosθK+c.m.<+0.95-0.85<\cos\theta_{K^+}^{c.m.}< +0.95. For the Λ\Lambda, the polarization transfer coefficient along the photon momentum axis, CzC_z, was found to be near unity for a wide range of energy and kaon production angles. The associated transverse polarization coefficient, CxC_x, is smaller than CzC_z by a roughly constant difference of unity. Most significantly, the {\it total} Λ\Lambda polarization vector, including the induced polarization PP, has magnitude consistent with unity at all measured energies and production angles when the beam is fully polarized. For the Σ0\Sigma^0 this simple phenomenology does not hold. All existing hadrodynamic models are in poor agreement with these results.Comment: 28 pages, 18 figures, Submitted to Physical Review

    First measurement of target and double spin asymmetries for polarized e- polarized p --> e p pi0 in the nucleon resonance region above the Delta(1232)

    Get PDF
    The exclusive channel polarized proton(polarized e,e prime p)pi0 was studied in the first and second nucleon resonance regions in the Q2 range from 0.187 to 0.770 GeV2 at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). Longitudinal target and beam-target asymmetries were extracted over a large range of center-of-mass angles of the pi0 and compared to the unitary isobar model MAID, the dynamic model by Sato and Lee, and the dynamic model DMT. A strong sensitivity to individual models was observed, in particular for the target asymmetry and in the higher invariant mass region. This data set, once included in the global fits of the above models, is expected to place strong constraints on the electrocoupling amplitudes A_{1/2} and S_{1/2} for the Roper resonance N(1400)P11, and the N(1535)S11 and N(1520)D13 states.Comment: 13 pages, 13 figure

    Ratios of 15N/12C and 4He/12C inclusive electroproduction cross sections in the nucleon resonance region

    Full text link
    The (W,Q2)-dependence of the ratio of inclusive electron scattering cross sections for 15N/12C was determined in the kinematic range 0.8<W<2 GeV and 0.2<Q2<1 GeV2 using 2.285 GeV electrons and the CLAS detector at Jefferson Lab. The ratios exhibit only slight resonance structure, in agreement with a simple phenomenological model and an extrapolation of DIS ratios to low Q2. Ratios of 4He/12C using 1.6 to 2.5 GeV electrons were measured with very high statistical precision, and were used to correct for He in the N and C targets. The (W,Q2) dependence of the 4He/12C ratios is in good agreement with the phenomenological model, and exhibit significant resonance structure centered at W=0.94, 1.23 and 1.5 GeV.Comment: 13 pages, 2 figures. Significantly shortened version. Results unchanged. Small additions for Phys. Rev.

    Measurement of the Polarized Structure Function σLT\sigma_{LT^\prime} for Pion Electroproduction in the Roper Resonance Region

    Full text link
    The polarized longitudinal-transverse structure function σLT\sigma_{LT^\prime} measures the interference between real and imaginary amplitudes in pion electroproduction and can be used to probe the coupling between resonant and non-resonant processes. We report new measurements of σLT\sigma_{LT^\prime} in the N(1440)1/2+N(1440){1/2}^+ (Roper) resonance region at Q2=0.40Q^2=0.40 and 0.65 GeV2^2 for both the π0p\pi^0 p and π+n\pi^+ n channels. The experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at a beam energy of 1.515 GeV. Complete angular distributions were obtained and are compared to recent phenomenological models. The σLT(π+n)\sigma_{LT^\prime}(\pi^+ n) channel shows a large sensitivity to the Roper resonance multipoles M1M_{1-} and S1S_{1-} and provides new constraints on models of resonance formation.Comment: 5 pages, 3 figures. Revised manuscript accepted by Physical Review C (Brief Report

    Separated Structure Functions for the Exclusive Electroproduction of K+ΛK^+\Lambda and K+Σ0K^+\Sigma^0 Final States

    Full text link
    We report measurements of the exclusive electroproduction of K+ΛK^+\Lambda and K+Σ0K^+\Sigma^0 final states from a proton target using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The separated structure functions σT\sigma_T, σL\sigma_L, σTT\sigma_{TT}, and σLT\sigma_{LT} were extracted from the Φ\Phi- and ϵ\epsilon-dependent differential cross sections taken with electron beam energies of 2.567, 4.056, and 4.247 GeV. This analysis represents the first σL/σT\sigma_L/\sigma_T separation with the CLAS detector, and the first measurement of the kaon electroproduction structure functions away from parallel kinematics. The data span a broad range of momentum transfers from 0.5Q22.80.5\leq Q^2\leq 2.8 GeV2^2 and invariant energy from 1.6W2.41.6\leq W\leq 2.4 GeV, while spanning nearly the full center-of-mass angular range of the kaon. The separated structure functions reveal clear differences between the production dynamics for the Λ\Lambda and Σ0\Sigma^0 hyperons. These results provide an unprecedented data sample with which to constrain current and future models for the associated production of strangeness, which will allow for a better understanding of the underlying resonant and non-resonant contributions to hyperon production.Comment: 61 pages, 26 figures, 5 table
    corecore