615 research outputs found

    Optimizing RF front ends for low power

    Get PDF
    This paper discusses optimizations for the power dissipation of RF front ends in portable wireless devices. A breakthrough in power dissipation can be achieved by simultaneously optimizing the antenna interface, circuits, and IC technology of such devices. A model that predicts the minimum power dissipation of a front end for both short-range and long-range connections will be introduced. Using these models, the impact of the antenna interface on the power dissipation will be assessed. Using two antennas with equal gain combining, a typical power dissipation reduction of 2.5 to 30 times can be achieved. Using high-impedance circuits for short-range systems in combination with silicon-on-anything technology, a further reduction of power dissipation by up to one order of magnitude can be realize

    Substrate transfer for RF technologies

    Get PDF
    The constant pressure on performance improvement in RF processes is aimed at higher frequencies, less power consumption, and a higher integration level of high quality passives with digital active devices. Although excellent for the fabrication of active devices, it is the silicon substrate as a carrier that is blocking breakthroughs. Since all devices on a silicon wafer have a capacitive coupling to the resistive substrate, this results in a dissipation of RF energy, poor quality passives, cross-talk, and injection of thermal noise. We have developed a low-cost wafer-scale post-processing technology for transferring circuits, fabricated with standard IC processing, to an alternative substrate, e.g., glass. This technique comprises the gluing of a fully processed wafer, top down, to an alternative carrier followed by either partial or complete removal of the original silicon substrate. This effectively removes the drawbacks of silicon as a circuit carrier and enables the integration of high-quality passive components and eliminates cross-talk between circuit parts. A considerable development effort has brought this technology to a production-ready level of maturity. Batch-to-batch production equipment is now available and the technology and know-how are being licensed. In this paper, we present four examples to demonstrate the versatility of substrate transfer for RF applications

    Substrate transfer for RF technologies

    Full text link

    Ten Misconceptions from the History of Analysis and Their Debunking

    Full text link
    The widespread idea that infinitesimals were "eliminated" by the "great triumvirate" of Cantor, Dedekind, and Weierstrass is refuted by an uninterrupted chain of work on infinitesimal-enriched number systems. The elimination claim is an oversimplification created by triumvirate followers, who tend to view the history of analysis as a pre-ordained march toward the radiant future of Weierstrassian epsilontics. In the present text, we document distortions of the history of analysis stemming from the triumvirate ideology of ontological minimalism, which identified the continuum with a single number system. Such anachronistic distortions characterize the received interpretation of Stevin, Leibniz, d'Alembert, Cauchy, and others.Comment: 46 pages, 4 figures; Foundations of Science (2012). arXiv admin note: text overlap with arXiv:1108.2885 and arXiv:1110.545

    Custom Integrated Circuits

    Get PDF
    Contains reports on seven research projects.U.S. Air Force - Office of Scientific Research (Contract F49620-84-C-0004)National Science Foundation (Grant ECS81-18160)Defense Advanced Research Projects Agency (Contract NOO14-80-C-0622)National Science Foundation (Grant ECS83-10941

    Germ cell sex determination in mammals

    Get PDF
    One of the major decisions that germ cells make during their development is whether to differentiate into oocytes or sperm. In mice, the germ cells’ decision to develop as male or female depends on sex-determining signalling molecules in the embryonic gonadal environment rather than the sex chromosome constitution of the germ cells themselves. In response to these sex-determining cues, germ cells in female embryos initiate oogenesis and enter meiosis, whereas germ cells in male embryos initiate spermatogenesis and inhibit meiosis until after birth. However, it is not clear whether the signalling molecules that mediate germ cell sex determination act in the developing testis or the developing ovary, or what these signalling molecules might be. Here, we review the evidence for the existence of meiosis-inducing and meiosis-preventing substances in the developing gonad, and more recent studies aimed at identifying these molecules in mice. In addition, we discuss the possibility that some of the reported effects of these factors on germ cell development may be indirect consequences of impairing sexual differentiation of gonadal somatic cells or germ cell survival. Understanding the molecular mechanisms of germ cell sex determination may provide candidate genes for susceptibility to germ cell tumours and infertility in humans
    corecore