15 research outputs found

    Final publishable JRP summary for ENV55 MetNH3 - Metrology for Ammonia in Ambient Air

    Get PDF
    This project developed reference standards and measurement techniques for traceable measurements of NH3 in air. These will enable validated high quality ammonia measurement data which will help monitor and compare NH3 levels and ensure compliance with environmental protection policies and legislation

    MetNH3: Metrology for Ammonia in Ambient Air

    Get PDF
    Measuring ammonia in ambient air is a sensitive and priority issue due to its harmful effects on human health and ecosystems. Ammonia is increasingly being globally acknowledged as a key precursor to atmospheric particulate matter. The European Directive 2001/81/EC on “National Emission Ceilings for Certain Atmospheric Pollutants (NEC)” regulates ammonia emissions in the member states. However, due to the chemical characteristics of ambient ammonia traceable on-line measurements still have significant challenges in analytical technology, uncertainty, quality assurance and quality control (QC/QA). Currently the UK National Ammonia Monitoring Network uses an accredited off-line low temporal resolution and on-line denuder–IC methods at the UK Supersites. There is a need for traceable ammonia measurements which will be vitally important for identifying changes in environment policies, climate and agricultural practice. This in turn should lead to improvements emission inventory uncertainties and for providing independent verification of atmospheric model predictions. MetNH3 (EMRP Joint Research Project) has worked with SMEs in testing improved reference gas mixtures by static and dynamic gravimetric generation methods, develop and refine existing laser based optical spectrometric standards and establishing the transfer from high-accuracy standards to field applicable methods. The first results from the metrological characterisation of a commercially available cavity ring-down spectrometer (CRDS) are presented and the results from a new design “Controlled Atmosphere Test Facility (CATFAC)”, which is currently characterising the performance of diffusive samplers. The range and characteristics of instruments are discussed. The plans for a major ammonia field intercomparison in 2016 will be outlined

    Metrology for Ammonia in Ambient Air. Final publishable JRP report

    Get PDF
    This project developed reference standards and measurement techniques for traceable measurements of NH3 in air. These will enable validated high quality ammonia measurement data which will help monitor and compare NH3 levels and ensure compliance with environmental protection policies and legislation

    Calibration of Quartz-Enhanced Photoacoustic Sensors for Real-Life Adaptation

    No full text
    We report on the use of quartz-enhanced photoacoustic spectroscopy for continuous carbon-dioxide measurements in humid air over a period of six days. The presence of water molecules alters the relaxation rate of the target molecules and thus the amplitude of the photoacoustic signal. Prior to the measurements, the photoacoustic sensor system was pre-calibrated using CO2 mole fractions in the range of 0–10−3 (0–1000 ppm) and at different relative humidities between 0% and 45%, while assuming a model hypothesis that allowed the photoacoustic signal to be perturbed linearly by H2O content. This calibration technique was compared against an alternative learning-based method, where sensor data from the first two days of the six-day period were used for self-calibration. A commercial non-dispersive infrared sensor was used as a CO2 reference sensor and provided the benchmark for the two calibration procedures. In our case, the self-calibrated method proved to be both more accurate and precise

    Intrinsic Spectral Resolution Limitations of QEPAS Sensors for Fast and Broad Wavelength Tuning

    No full text
    Quartz-enhanced photoacoustic sensing is a promising method for low-concentration trace-gas monitoring due to the resonant signal enhancement provided by a high-Q quartz tuning fork. However, quartz-enhanced photoacoustic spectroscopy (QEPAS) is associated with a relatively slow acoustic decay, which results in a reduced spectral resolution and signal-to-noise ratio as the wavelength tuning rate is increased. In this work, we investigate the influence of wavelength scan rate on the spectral resolution and signal-to-noise ratio of QEPAS sensors. We demonstrate the acquisition of photoacoustic spectra from 3.1 μm to 3.6 μm using a tunable mid-infrared optical parametric oscillator. The spectra are attained using wavelength scan rates differing by more than two orders of magnitude (from 0.3 nm s−1 to 96 nm s−1). With this variation in scan rate, the spectral resolution is found to change from 2.5 cm−1 to 9 cm−1. The investigated gas samples are methane (in nitrogen) and a gas mixture consisting of methane, water, and ethanol. For the gas mixture, the reduced spectral resolution at fast scan rates significantly complicates the quantification of constituent gas concentrations
    corecore