37 research outputs found

    Diagnosis of tuberculosis in wildlife: a systematic review

    Get PDF
    [EN] Animal tuberculosis (TB) is a multi-host disease caused by members of the Mycobacterium tuberculosis complex (MTC). Due to its impact on economy, sanitary standards of milk and meat industry, public health and conservation, TB control is an actively ongoing research subject. Several wildlife species are involved in the maintenance and transmission of TB, so that new approaches to wildlife TB diagnosis have gained relevance in recent years. Diagnosis is a paramount step for screening, epidemiological investigation, as well as for ensuring the success of control strategies such as vaccination trials. This is the first review that systematically addresses data available for the diagnosis of TB in wildlife following the Preferred Reporting Items of Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The article also gives an overview of the factors related to host, environment, sampling, and diagnostic techniques which can affect test performance. After three screenings, 124 articles were considered for systematic review. Literature indicates that post-mortem examination and culture are useful methods for disease surveillance, but immunological diagnostic tests based on cellular and humoral immune response detection are gaining importance in wildlife TB diagnosis. Among them, serological tests are especially useful in wildlife because they are relatively inexpensive and easy to perform, facilitate large-scale surveillance and can be used both ante- and post-mortem. Currently available studies assessed test performance mostly in cervids, European badgers, wild suids and wild bovids. Research to improve diagnostic tests for wildlife TB diagnosis is still needed in order to reach accurate, rapid and cost-effective diagnostic techniques adequate to a broad range of target species and consistent over space and time to allow proper disease monitoring.SIThis work has been funded by project MYCOTRAINING SBPLY/19/180501/000174 (Junta de Castilla-La Mancha), Agencia Estatal de Investigación grant WildDriver CGL2017-89866 (MINECO, Spain and EU FEDER), project RTI2018-096010-B-C21 (MCIU and AEI; FEDER co-funded), and PCTI 2018–2020 (GRUPIN: IDI2018-000237) (Gobierno del Principado de Asturias and FEDER). J. Thomas was supported by a grant from the Indian Council of Agricultural Research-International Fellowship 2014–2015 (ICAR-IF 2014–2015)

    Anencephaly and Severe Myelodysplasia in a Stillborn Brown Bear (Ursus arctos arctos)

    Get PDF
    [EN] Malformations in the development of the neural tube have been described to be associated with different aetiologies, such as genetic factors, toxic plants, chemical products, viral agents, or hyperthermia. A twenty-four-year-old female Eurasian brown bear (Ursus arctos arctos), permanently in captivity and kept under food and management control, gave birth to a stillborn cub at the end of gestation. Several malformations resulting from the anomalous development of the neural tube, not previously reported in bears, were observed, such as anencephaly, hypoplasia, micromyelia, severe myelodysplasia, syringomyelia, and spina bifida. Multiple canal defects (e.g., absence) were also observed in the spinal cord. In some regions, the intradural nerve roots surrounded the spinal cord in a diffuse and continuous way. The aetiology remains unidentified, although the advanced age of the mother and/or folic acid deficit might have been the possible causes of this disorder. Supplements of folate given to the mother before and during early pregnancy may have reduced the incidence of neural tube defects. That supplementation should be considered when the reproduction of bears is to occur in captivity, in order to prevent the loss of future generations of this endangered speciesSIThis work was partially funded by the Principality of Asturias (PCTI 2021–2023, GRUPIN: IDI-2021-000102) and the European Regional Development Fun

    Evaluation of the COVID-19 Lockdown-Adapted Online Methodology for the Cytology and Histology Course as Part of the Degree in Veterinary Medicine

    Get PDF
    [EN] The COVID-19 pandemic and lockdown brought numerous teaching challenges requiring innovative approaches to teaching and learning, including novel modes of content delivery, virtual classrooms, and online assessment schemes. The aim of this study is to describe and assess the efficacy of the methods implemented at the University of León (Spain) to adapt to lockdowns in the context of the Cytology and Histology (CH) course for veterinary medicine undergraduate students. To evaluate the success of lockdown-adapted methodologies, we used inferential statistical analysis to compare the academic outcomes of two cohorts: 2018–2019 (traditional face-to-face—presential—learning and evaluation) and 2019–2020 (some face-to-face and some online lockdown-adapted learning and online lockdown-adapted evaluation). This analysis considered scores in both theoretical and practical exams and students’ final subject score. We also evaluated the number of logs onto the Moodle platform throughout the 2019–2020 period, as well as performing a student satisfaction survey in both courses. The use of explanatory pre-recorded lectures, continuous online self-assessment tests, and virtual microscopy (VM) may have produced significant improvements in the acquisition of histology competencies among students in the lockdown cohort. However, we need to implement further strategies to improve the assessment of students’ true level of knowledge acquisition. According to the student feedback, VM is a well-accepted resource that is perceived as a flexible and enjoyable tool to use. However, while students found that the resource enhances their ability to learn about microscopic structures, they felt that it should not completely replace optical microscopySIThe digital material used for teaching and student assessment was developed thanks to the funding of two grants from the University of León (Spain) from the Teaching Innovation Project Office titled “Introducción en el aula universitaria de una metodología docente virtual para la enseñanza práctica de asignaturas en los Grados en Veterinaria y Biología (PAGID2017)” and “Metodología docente virtual en la enseñanza práctica de asignaturas de los Grados en Veterinaria y Biología. Elaboración de nuevos materiales didácticos digitales (PAGID2018

    Phenotypic Characterization of Encephalitis in the BRAINS of Badgers Naturally Infected with Canine Distemper Virus

    Get PDF
    [EN] Canine distemper virus (CDV) affects a huge diversity of domestic and wild carnivores, with increasing numbers of mortality events worldwide. The local cell-mediated immune response elicited against a natural infection is an important factor in determining the outcome of CDV infection. Therefore, the purposes of this study were to describe the local immune response within the central nervous systems (CNSs) of seven badgers naturally infected with CDV in Asturias (Atlantic Spain) and to determine the phenotype and distribution of microglial cells, T and B lymphocytes, and astrocytes in the foci of gliosis located in the thalamus and cerebellum using immunohistochemistry. The immunohistochemical assessment demonstrated the presence of Iba1-positive microglia and GFAP-positive astrocytes in the foci of gliosis, whereas T (CD3-negative) or B (CD20-negative) lymphocytes in those same lesions were absent. Our results also revealed that the badgers with natural CDV encephalitis presented lesions mostly located in the white matter of the thalamus and cerebellum, suggesting a CDV-specific tropism for the white matter of badger brains in those locations. The knowledge gained in the field of the immunopathogenesis of distemper disease affecting the CNSs of badgers could help to clarify CDV disease patterns in this speciesSIThis work was partially funded by the Principality of Asturias (PCTI 2021–2023, GRUPIN: IDI-2021-000102) and European Regional Development Fun

    Wolves contribute to disease control in a multi-host system

    Get PDF
    [EN] We combine model results with field data for a system of wolves (Canis lupus) that prey on wild boar (Sus scrofa), a wildlife reservoir of tuberculosis, to examine how predation may contribute to disease control in multi-host systems. Results show that predation can lead to a marked reduction in the prevalence of infection without leading to a reduction in host population density since mortality due to predation can be compensated by a reduction in disease induced mortality. A key finding therefore is that a population that harbours a virulent infection can be regulated at a similar density by disease at high prevalence or by predation at low prevalence. Predators may therefore provide a key ecosystem service which should be recognised when considering human-carnivore conflicts and the conservation and re-establishment of carnivore populationsSIThis is a contribution to MINECO Plan Nacional grant WILD DRIVER ref. CGL2017-89866 and EU-FEDER. Eleanor Tanner was supported by The Maxwell Institute Graduate School in Analysis and its Applications, a Centre for Doctoral Training funded by the UK Engineering and Physical Sciences Research Council (grant EP/ L016508/01), the Scottish Funding Council, Heriot-Watt University and the University of Edinburgh. Pelayo Acevedo was supported by the Ministerio de Economía y Competitividad (MINECO) and the University of Castilla-La Mancha through a “Ramón y Cajal” contract (RYC-2012-11970). This research was also supported by Ministerio para la Transición Ecológica, through Fundación Biodiversida

    Bovine Intelectin 2 Expression as a Biomarker of Paratuberculosis Disease Progression

    Get PDF
    [EN]Paratuberculosis (PTB), a chronic granulomatous enteritis caused by Mycobacterium avium subsp. paratuberculosis (MAP), is responsible for important economic losses in the dairy indus-try. Our previous RNA-sequencing (RNA-Seq) analysis showed that bovine intelectin 2 (ITLN2) precursor gene was overexpressed in ileocecal valve (ICV) samples of animals with focal (log2 fold-change = 10.6) and diffuse (log2 fold-change = 6.8) PTB-associated lesions compared to animals without lesions. This study analyzes the potential use of ITLN2, a protein that has been described as fundamental in the innate immune response to infections, as a biomarker of MAP infection. The presence of ITLN2 was investigated by quantitative immunohistochemical analysis of ICV samples of 20 Holstein Friesian cows showing focal (n = 5), multifocal (n = 5), diffuse (n = 5) and no histological lesions (n = 5). Significant differences were observed in the mean number of ITLN2 immunostained goblet and Paneth cells between the three histopathological types and the control. The number of immunolabelled cells was higher in the focal histopathological type (116.9 ± 113.9) followed by the multifocal (108.7 ± 140.5), diffuse (76.5 ± 97.8) and control types (41.0 ± 81.3). These results validate ITLN2 as a post-mortem biomarker of disease progression.SIThis work has been funded by the National Institute for Agricultural Research (INIA RTA- 2014-00009-C02), the Ministerio de Ciencia, Innovación y Universidades (MCIU) and the Agencia Estatal de Investigación (AEI) reference project RTI2018-094192-R-C22 (FEDER co-funded). Cristina Blanco Vázquez and Maria Canive were supported by a grant from Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, Spain)

    Mortality Causes in Free-Ranging Eurasian Brown Bears (Ursus arctos arctos) in Spain 1998–2018

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).[EN] This work summarizes the mortality cases of twenty-five free-ranging Eurasian wild brown bears (Ursus arctos arctos) from the Cantabrian mountain range submitted for necropsy in Asturias and Castilla y León (northwestern Spain) from 1998 to 2018. Mortality cases were classified both caused by (i) "non-human intervention" or "human intervention” causes and based on (ii) "non-infectious" or "infectious" etiology. In four cases (16%) it was not possible to determine the cause of death due to the inadequate preservation of collected specimens or insufficient tissue availability. Based on "non-human intervention" or "human intervention” causes, fourteen of the 21 (66.7%) brown bears died as a consequence of "non-human intervention" due to traumatic lesions (fights, unknown traumas or infanticide), infectious canine hepatitis, neoplasia or mushroom poisoning. In contrast, seven (33.3%) brown bears died by “human intervention” due to illegal hunting (shooting or snare), handling (during transit in an attempt to reintroduce a bear back into the wild) or strychnine poisoning. Based on "non-infectious" or "infectious" etiology, twelve of the 21 (57.1%) brown bears died due to "non-infectious” causes, namely traumatic lesions such as shooting, snare, fighting or infanticide, handling, strychnine poisoning, mushroom poisoning or neoplasia. The remaining nine (42.9%) animals died due to “infectious” diseases which included gangrenous myositis, infectious canine hepatitis or septicemia. In six of those cases traumatic lesions caused by non-human or human activities were complicated with bacterial infection (clostridiosis and septicemia) which finally caused the death of those animals. Additionally, exertional myopathy was observed in the handled animal and in one bear found in a snare. In a free-ranging population of Eurasian brown bear from the Cantabrian mountain range, main causes of death are attributed to non-human related traumatic lesions and infectious diseases (primary developed such as infectious canine hepatitis or secondary developed such as clostridiosis or septicemia) which is in contrast to previously reported data for other bear populations. These data are valuable and may help in the conservation and management of this recovering population.SIAuthors thank colleagues from SERIDA, University of León, Servicios del Principado de Asturias (SERPA), Servicio de Espacios Protegidos y Conservación de la Naturaleza, Dirección General de Biodiversidad from Viceconsejería de Medio Ambiente del Principado de Asturias and Consejería de Fomento y Medio Ambiente de la Junta de Castilla y Léon for the invaluable collaboration. We thank Kevin P. Dalton for critically reviewing the manuscript.This work was partially supported by the Principado de Asturias, PCTI 2018–220 (GRUPIN: IDI2018-000237 and FEDER)

    Vaccination of rabbits with immunodominant antigens from Sarcoptes scabiei induced high levels of humoral responses and pro-inflammatory cytokines but confers limited protection

    Get PDF
    © 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.[EN]Background: Vaccination is an attractive ecological alternative to the use of acaricides for parasite control. However, effective anti-parasite vaccines against sarcoptic mange have not yet been developed. The purpose of this study was first to identify Sarcoptes scabiei immunodominant antigens and second to evaluate them as vaccine candidates in a rabbit/S. scabiei var. cuniculi model. Methods: The S. scabiei Ssλ15 immunodominant antigen was selected by immunoscreening of a S. scabiei var. hominis cDNA. The full-length cDNA was sequenced and cloned into the pGEX vector and the recombinant protein expressed in BL21 (DE3) cells and purified. A vaccination trial was performed consisting of a test group (n = 8) immunised with recAgs (a mix of two recombinant antigens, Ssλ15 and the previously described Ssλ20ΔB3) and a control group (n = 8) immunised with PBS. All analyses were performed with R Statistical Environment with α set at 0.050. Results: The full-length open reading frame of the 1,821 nt cloned cDNA encodes a 64 kDa polypeptide, the sequence of which had 96 % identity with a hypothetical protein of S. scabiei. Ssλ15 was localised by immunostaining of skin sections in the tegument surrounding the mouthparts and the coxa in the legs of mites. Rabbit immunisation with recAgs induced high levels of specific IgG (P < 0.010) and increased levels of total IgEs. However, no significant clinical protection against S. scabiei challenge was detected. Unexpectedly, the group immunised with the recAgs mix had significantly higher lesion scores (P = 0.050) although lower mean mite densities than those observed in the control group. These results might indicate that the lesions in the recAgs group were due not only to the mites density but also to an exacerbated immunological response after challenge, which is in agreement with the specific high levels of pro-inflammatory cytokines (IL-1 and TNFα) detected after challenge in this group. Conclusions: The selected antigens delivered as recombinant proteins had no clinical protective efficacy against S. scabiei infestation although immunisation reduced mite density. However, these results pave the way for future studies on alternative production systems, adjuvants, delivery methods and combinations of antigens in order to manage stimulation of clinical protective immune responses.SIThis work was partially funded by grant RTA11-00087-00-00 from the Spanish Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Fondo Europeo de Desarrollo Regional (FEDER), AGL2010-22200-C02-01 from Spanish Ministry (MINECO) and the Biotechnology and Biological Sciences Research Council (BBSRC) grant BBS/E/I/00002014

    Immunohistochemical Assessment of Immune Response in the Dermis of Sarcoptes scabiei—Infested Wild Carnivores (Wolf and Fox) and Ruminants (Chamois and Red Deer)

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)[EN] Sarcoptic mange is caused by the mite Sarcoptes scabiei and has been described in several species of domestic and wild mammals. Macroscopic lesions are predominantly hyperkeratotic (type I hypersensitivity) in fox, chamois and deer, but alopecic (type IV hypersensitivity) in wolf and some fox populations. To begin to understand the immune processes underlying these species differences in lesions, we examined skin biopsies from wolves (Canis lupus), foxes (Vulpes vulpes), chamois (Rupicapra rupicapra) and red deer (Cervus elaphus) naturally infested with S. scabiei. Twenty skin samples from five animals per species were used. Sections were immuno-stained with primary antibodies against Iba1 to detect macrophages, lambda chain to detect plasma cells, CD3 to detect T lymphocytes and CD20 to detect B lymphocytes. Skin lesions contained significantly more inflammatory cells in the fox than in the wolf and chamois. Macrophages were the most abundant inflammatory cells in the lesions of all the species studied, suggesting a predominantly innate, non-specific immune response. Lesions from the wolf contained higher proportions of macrophages than the other species, which may reflect a more effective response, leading to alopecic lesions. In red deer, macrophages were significantly more abundant than plasma cells, T lymphocytes and B lymphocytes, which were similarly abundant. The fox proportion of plasma cells was significantly higher than those of T and B lymphocytes. In chamois, T lymphocytes were more abundant than B lymphocytes and plasma cells, although the differences were significant only in the case of macrophages. These results suggest that all the species examined mount a predominantly innate immune response against S. scabiei infestation, while fox and chamois may also mount substantial humoral and cellular immune responses, respectively, with apparently scarce effectiveness that lead to hyperkeratotic lesions.SIThe authors would like to thank the Vice-Ministry of the Environment of the Principado of Asturias. The authors thank A. Chapin Rodríguez for critically reviewing the manuscript.This work was partially supported by the Principado de Asturias, PCTI 2018–220 (GRUPIN: IDI2018-000237 and FEDER). Ms. Ileana Z. Martínez was supported by a Fundación Carolina PhD scholarship (2017 call)

    Immunohistochemical characterization of tuberculous lesions in sheep naturally infected with Mycobacterium bovis

    Get PDF
    © The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.[EN] Background: Sheep have been traditionally considered as less susceptible to Mycobacterium bovis (Mbovis) infection than other domestic ruminants such as cattle and goats. However, there is increasing evidence for the role of this species as a domestic Mbovis reservoir, mostly when sheep share grazing fields with infected cattle and goats. Nevertheless, there is a lack of information about the pathogenesis and the immune response of Mbovis infection in sheep. The goals of this study were to characterize the granuloma stages produced by the natural infection of Mbovis in sheep, to compare them with other species and to identify possible differences in the sheep immune response. Samples from bronchial lymph nodes from twelve Mbovis-naturally infected sheep were used. Four immunohistochemical protocols for the specific detection of T-lymphocytes, B-lymphocytes, plasma cells and macrophages were performed to study the local immune reaction within the granulomas. Results: Differences were observed in the predominant cell type present in each type of granuloma, as well as differences and similarities with the development of tuberculous granulomas in other species. Very low numbers of T-lymphocytes were observed in all granuloma types indicating that specific cellular immune response mediated by T-cells might not be of much importance in sheep in the early stages of infection, when macrophages are the predominant cell type within lesions. Plasma cells and mainly B lymphocytes increased considerably as the granuloma developed being attracted to the lesions in a shift towards a Th2 response against the increasing amounts of mycobacteria. Therefore, we have proposed that the granulomas could be defined as initial, developed and terminal. Conclusions: Results showed that the study of the lymphoid tissue granulomata reinforces the view that the three different types of granuloma represent stages of lesion progression and suggest an explanation to the higher resistance of sheep based on a higher effective innate immune response to control tuberculosis infection.SIThis paper was funded by a grant from INIA-RTA2014–00002-C02–01 (FEDER co-funded)
    corecore