10 research outputs found

    Object memory enhancement by combining sub-efficacious doses of specific phosphodiesterase inhibitors

    No full text
    The second messengers cGMP and cAMP have a vital role in synaptic plasticity and memory processes. As such, phosphodiesterases inhibitors (PDE-Is), which prevent the breakdown of these cyclic nucleotides, represent a potential treatment strategy in memory decline. Recently it has been demonstrated that cGMP and cAMP signaling act in sequence during memory consolidation, with early cGMP signaling requiring subsequent cAMP signaling. Here, we sought to confirm this relationship, and to evaluate its therapeutic implications. Combining sub-efficacious doses of the cGMP-specific PDE type 5 inhibitor vardenafil (0.1 mg/kg) and cAMP-specific PDE type 4 inhibitor rolipram (0.01 mg/kg) during the early and late memory consolidation phase, respectively, led to improved memory performance in a 24 h interval object recognition task. Similarly, such a sub-efficacious combination treatment enhanced the transition of early-phase long-term potentiation (LTP) to late-phase LTP in hippocampal slices. In addition, both object memory and LTP were improved after administration of two sub-efficacious doses of the dual substrate PDE type 2 inhibitor BAY60 7550 (0.3 mg/kg) at the early and late consolidation phase, respectively. Taken together, combinations of sub-efficacious doses of cAMP- and cGMP-specific PDE-Is have an additive effect on long-term synaptic plasticity and memory formation and might prove a superior alternative to single PDE-I treatment.publisher: Elsevier articletitle: Object memory enhancement by combining sub-efficacious doses of specific phosphodiesterase inhibitors journaltitle: Neuropharmacology articlelink: http://dx.doi.org/10.1016/j.neuropharm.2015.04.008 content_type: article copyright: Copyright © 2015 Elsevier Ltd. All rights reserved.status: publishe

    System identification of metabotropic glutamate receptor dependent long–term depression

    No full text
    Recent advances have started to uncover the underlying mechanisms of metabotropic glutamate receptor (mGluR) dependent long-term depression (LTD). However, it is not completely clear how these mechanisms are linked and it is believed that several crucial mechanisms still remain to be revealed. In this study, we investigated whether system identification (SI) methods can be used to gain insight into the mechanisms of synaptic plasticity. SI methods have shown to be an objective and powerful approach for describing how sensory neurons encode information about stimuli. However, to the author’s knowledge it is the first time that SI methods are applied on electrophysiological brain slice recordings of synaptic plasticity responses. The results indicate that the SI approach is a valuable tool for reverse engineering of mGluR-LTD responses. It is suggested that such SI methods can aid to unravel the complexities of synaptic function

    Spred1 is required for synaptic plasticity and hippocampus-dependent learning

    No full text
    Germline mutations in SPRED1, a negative regulator of Ras, have been described in a neurofibromatosis type 1 (NF1)-like syndrome (NFLS) that included learning difficulties in some affected individuals. NFLS belongs to the group of phenotypically overlapping neurocardio-facial-cutaneous syndromes that are all caused by germ line mutations in genes of the Ras/mitogen-activated protein kinase extracellular signal-regulated kinase (ERK) pathway and that present with some degree of learning difficulties or mental retardation. We investigated hippocampus-dependent learning and memory as well as synaptic plasticity in Spred1-/-mice, an animal model of this newly discovered human syndrome. Spred1-/-mice show decreased learning and memory performance in the Morris water maze and visual-discrimination T-maze, but normal basic neuromotor and sensory abilities. Electrophysiological recordings on brain slices from these animals identified defects in short- and long-term synaptic hippocampal plasticity, including a disequilibrium between long-term potentiation (LTP) and long-term depression in CA1 region. Biochemical analysis, 4 h after LTP induction, demonstrated increased ERK-phosphorylation in Spred1-/-slices compared with those of wild-type littermates. This indicates that deficits in hippocampusdependent learning and synaptic plasticity induced by SPRED1 deficiency are related to hyperactivation of the Ras/ERK pathway. Copyrigh

    Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2

    No full text
    Autism spectrum disorders comprise a range of neurodevelopmental disorders characterized by deficits in social interaction and communication, and by repetitive behaviour. Mutations in synaptic proteins such as neuroligins, neurexins, GKAPs/SAPAPs and ProSAPs/Shanks were identified in patients with autism spectrum disorder, but the causative mechanisms remain largely unknown. ProSAPs/Shanks build large homo- and heteromeric protein complexes at excitatory synapses and organize the complex protein machinery of the postsynaptic density in a laminar fashion. Here we demonstrate that genetic deletion of ProSAP1/Shank2 results in an early, brain-region-specific upregulation of ionotropic glutamate receptors at the synapse and increased levels of ProSAP2/Shank3. Moreover, ProSAP1/Shank2(-/-) mutants exhibit fewer dendritic spines and show reduced basal synaptic transmission, a reduced frequency of miniature excitatory postsynaptic currents and enhanced N-methyl-d-aspartate receptor-mediated excitatory currents at the physiological level. Mutants are extremely hyperactive and display profound autistic-like behavioural alterations including repetitive grooming as well as abnormalities in vocal and social behaviours. By comparing the data on ProSAP1/Shank2(-/-) mutants with ProSAP2/Shank3αβ(-/-) mice, we show that different abnormalities in synaptic glutamate receptor expression can cause alterations in social interactions and communication. Accordingly, we propose that appropriate therapies for autism spectrum disorders are to be carefully matched to the underlying synaptopathic phenotype.status: publishe

    Improved Long-Term Memory via Enhancing cGMP-PKG Signaling Requires cAMP-PKA Signaling

    No full text
    Memory consolidation is defined by the stabilization of a memory trace after acquisition, and consists of numerous molecular cascades that mediate synaptic plasticity. Commonly, a distinction is made between an early and a late consolidation phase, in which early refers to the first hours in which labile synaptic changes occur, whereas late consolidation relates to stable and long-lasting synaptic changes induced by de novo protein synthesis. How these phases are linked at a molecular level is not yet clear. Here we studied the interaction of the cyclic nucleotide-mediated pathways during the different phases of memory consolidation in rodents. In addition, the same pathways were studied in a model of neuronal plasticity, long-term potentiation (LTP). We demonstrated that cGMP/PKG signaling mediates early memory consolidation as well as early-phase-LTP, while cAMP/PKA signaling mediates late consolidation and late-phase-like LTP. Additionally, we show for the first time that early-phase cGMP/PKG-signaling requires late-phase cAMP/PKA-signaling in both LTP and long-term memory formation.Neuropsychopharmacology accepted article preview online, 12 May 2014; doi:10.1038/npp.2014.106

    Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2.

    No full text
    International audienceAutism spectrum disorders comprise a range of neurodevelopmental disorders characterized by deficits in social interaction and communication, and by repetitive behaviour. Mutations in synaptic proteins such as neuroligins, neurexins, GKAPs/SAPAPs and ProSAPs/Shanks were identified in patients with autism spectrum disorder, but the causative mechanisms remain largely unknown. ProSAPs/Shanks build large homo- and heteromeric protein complexes at excitatory synapses and organize the complex protein machinery of the postsynaptic density in a laminar fashion. Here we demonstrate that genetic deletion of ProSAP1/Shank2 results in an early, brain-region-specific upregulation of ionotropic glutamate receptors at the synapse and increased levels of ProSAP2/Shank3. Moreover, ProSAP1/Shank2(-/-) mutants exhibit fewer dendritic spines and show reduced basal synaptic transmission, a reduced frequency of miniature excitatory postsynaptic currents and enhanced N-methyl-d-aspartate receptor-mediated excitatory currents at the physiological level. Mutants are extremely hyperactive and display profound autistic-like behavioural alterations including repetitive grooming as well as abnormalities in vocal and social behaviours. By comparing the data on ProSAP1/Shank2(-/-) mutants with ProSAP2/Shank3αβ(-/-) mice, we show that different abnormalities in synaptic glutamate receptor expression can cause alterations in social interactions and communication. Accordingly, we propose that appropriate therapies for autism spectrum disorders are to be carefully matched to the underlying synaptopathic phenotype
    corecore