10 research outputs found

    Assessing the Impact of Misclassification Error on an Epidemiological Association between Two Helminthic Infections

    Get PDF
    Hookworm, roundworm, and whipworm are collectively known as soil-transmitted helminths. These worms are prevalent in most of the developing countries along with another parasitic infection called schistosomiasis. The tests commonly used to detect infection with these worms are less than 100% accurate. This leads to misclassification of infection status since these tests cannot always correctly indentify infection. We conducted an epidemiological study where such a test, the Kato-Katz technique, was used. In our study we tried to show how misclassification error can influence the association between soil-transmitted helminth infection and schistosomiasis in humans. We used a statistical technique to calculate epidemiological measures of association after correcting for the inaccuracy of the test. Our results show that there is a major difference between epidemiological measures of association before and after the correction of the inaccuracy of the test. After correction of the inaccuracy of the test, soil-transmitted helminth infection was found to be associated with increased risk of acquiring schistosomiasis. This has major public health implications since effective control of one worm can lead to reduction in the occurrence of another and help to reduce the overall burden of worm infection in affected regions

    A cross-sectional study of the prevalence of intensity of infection with Schistosoma japonicum in 50 irrigated and rain-fed villages in Samar Province, the Philippines

    Get PDF
    BACKGROUND: Few studies have described heterogeneity in Schistosoma japonicum infection intensity, and none were done in Philippines. The purpose of this report is to describe the village-to-village variation in the prevalence of two levels of infection intensity across 50 villages of Samar Province, the Philippines. METHODS: This cross-sectional study was conducted in 25 rain-fed and 25 irrigated villages endemic for S. japonicum between August 2003 and November 2004. Villages were selected based on irrigation and farming criteria. A maximum of 35 eligible households were selected per village. Each participant was asked to provide stool samples on three consecutive days. All those who provided at least one stool sample were included in the analysis. A Bayesian three category outcome hierarchical cumulative logit regression model with adjustment for age, sex, occupation and measurement error of the Kato-Katz technique was used for analysis. RESULTS: A total of 1427 households and 6917 individuals agreed to participate in the study. A total of 5624 (81.3%) participants provided at least one stool sample. The prevalences of those lightly and at least moderately infected varied from 0% (95% Bayesian credible interval (BCI): 0%–3.1%) to 45.2% (95% BCI: 36.5%–53.9%) and 0% to 23.0% (95% BCI: 16.4%–31.2%) from village-to-village, respectively. Using the 0–7 year old group as a reference category, the highest odds ratio (OR) among males and females were that of being aged 17–40-year old (OR = 8.76; 95% BCI: 6.03–12.47) and 11–16-year old (OR = 8.59; 95% BCI: 4.74–14.28), respectively. People who did not work on a rice farm had a lower prevalence of infection than those working full time on a rice farm. The OR for irrigated villages compared to rain-fed villages was 1.41 (95% BCI: 0.50–3.21). DISCUSSION: We found very important village-to-village variation in prevalence of infection intensity. This variation is probably due to village-level variables other than that explained by a crude classification of villages into the irrigated and non-irrigated categories. We are planning to capture this spatial heterogeneity by updating our initial transmission dynamics model with the data reported here combined with 1-year post-treatment follow-up of study participants

    Population Genetics of Schistosoma japonicum within the Philippines Suggest High Levels of Transmission between Humans and Dogs

    Get PDF
    Schistosomiasis is a disease caused by parasitic worms known as schistosomes, which infect about 200 million people worldwide. In the Philippines, as in China, the species of schistosome (Schistosoma japonicum) which causes the disease infects not only humans, but also many other species of mammals. In China, bovines are thought to be particularly important for harboring and transmitting S. japonicum, whereas in the Philippines infections in bovines are relatively rare. However, dogs, rats and pigs are often infected with S. japonicum in the Philippines, although the extent to which infections in these animals may give rise to human infections is unclear. To help answer this question, we characterized the genetic variation of the parasite in Samar province of the Philippines, and found that S. japonicum samples from humans, dogs, rats and pigs were genetically very similar, with no significant genetic difference between samples from humans and dogs. This suggests that in the Philippines this parasite is frequently transmitted between different mammalian species, particularly between dogs and humans. Reducing levels of infections in dogs may therefore help to reduce infections in humans. The results also suggest high levels of transmission between geographic areas, thus regional co-ordination of treatment programs is recommended

    Is mass treatment the appropriate schistosomiasis elimination strategy?

    No full text
    OBJECTIVE: In the year 2000, the Philippines' Department of Health adopted mass chemotherapy using praziquantel to eliminate schistosomiasis. Mass treatment was offered to an eligible population of 30 187 residents of 50 villages in Western Samar, the Philippines, in 2004 as part of an ongoing epidemiological study, Schistosomiasis Transmission and Ecology in the Philippines (STEP), aimed at measuring the effect of irrigation on infection with schistosomiasis. This paper describes the mass-treatment activities and factors associated with participation. METHODS: Advocacy, information dissemination and social mobilization activities were conducted before mass chemotherapy. Village leaders were primarily responsible for community mobilization. Mass treatment was offered in village meeting halls and schools. Participation proportions were estimated based on the 2002-2003 census. Community involvement was measured using a participation index. A Bayesian hierarchical logistic regression model was fitted to estimate the association between sociodemographic factors and residents coming to the treatment site. FINDINGS: A village-level average of 53.1% of residents (range: 21.1-85.3) came to the treatment site, leading to a mass-treatment coverage with an average of 48.3% (range: 15.8-80.7). At the individual level, participation proportions were higher among males, preschool and school-age children, non-STEP participants and among those who provided a stool sample. At the village-level, better community involvement was associated with increased participation whereas a larger census was associated with decreased participation. CONCLUSION: The conduct of mass treatment in the 50 villages resulted in far lower participation than expected. This raises concern for the ongoing mass-treatment initiatives now taking place in developing countries

    Cross-sectional associations between intensity of animal and human infection with Schistosoma japonicum in Western Samar province, Philippines.

    No full text
    OBJECTIVE: To estimate the association between the intensity of animal infection with Schistosoma japonicum and human infection in Western Samar province, the Philippines. METHODS: We conducted an observational cross-sectional study of 1425 households in 50 villages. Stool samples were collected on each of 1-3 days from 5623 humans, 1275 cats, 1189 dogs, 1899 pigs, 663 rats and 873 water buffalo. Intensity of infection with S. japonicum was measured by the number of eggs per gram (EPG). Egg counts were done using the Kato-Katz method. We used a Bayesian hierarchical cumulative logit model, with adjustments for age, sex, occupation and measurement error. FINDINGS: The adjusted proportions of humans lightly infected (classified as 1-100 EPG) was 17.7% (95% Bayesian credible interval = 15.3-20.2%); the proportion classified as at least moderately infected (>100 EPG) was 3.2% (2.2-4.6%). The crude parasitological results for animals indicated that 37 cats (2.9%), 228 dogs (19.2%), 39 pigs (2.1%), 199 rats (30.0%) and 28 water buffalo (3.2%) were infected. In univariate analyses the odds ratios corresponding to a unit increase in the mean number of EPG at the village-level in dogs was 1.05 (1.01-1.09), in cats 1.35 (1.02-1.78), in pigs 1.16 (0.24- 5.18) and in rats 1.00 (1.00-1.01). Mean EPG values in cats, dogs, pigs and rats were correlated with one another. This confounding made interpreting the odds ratios difficult, but the odds ratios for dogs and cats were more consistent. CONCLUSION: S. japonicum is endemic in areas of the Philippines despite implementation of control programmes. This may be due to the association of infections in dogs and cats with human infections. Infection control in dogs and cats is challenging, and there is a need to develop new methods to control transmission across all species

    Antibiotics : cautions on their use in mastitis treatment

    Get PDF
    BACKGROUND: Among the 6.7 million people living in areas of the Philippines where infection with Schistosoma japonicum is considered endemic, even within small geographical areas levels of infection vary considerably. In general, the ecological drivers of this variability are not well described. Unlike other schistosomes, S. japonicum is known to infect several mammalian hosts. However, the relative contribution of different hosts to the transmission cycle is not well understood. Here, we characterize the transmission dynamics of S. japonicum using data from an extensive field study and a mathematical transmission model. METHODS AND FINDINGS: In this study, stool samples were obtained from 5,623 humans and 5,899 potential nonhuman mammalian hosts in 50 villages in the Province of Samar, the Philippines. These data, with variable numbers of samples per individual, were adjusted for known specificities and sensitivities of the measurement techniques before being used to estimate the parameters of a mathematical transmission model, under the assumption that the dynamic transmission processes of infection and recovery were in a steady state in each village. The model was structured to allow variable rates of transmission from different mammals (humans, dogs, cats, pigs, domesticated water buffalo, and rats) to snails and from snails to mammals. First, we held transmission parameters constant for all villages and found that no combination of mammalian population size and prevalence of infectivity could explain the observed variability in prevalence of infection between villages. We then allowed either the underlying rate of transmission (a) from snails to mammals or (b) from mammals to snails to vary by village. Our data provided substantially more support for model structure (a) than for model structure (b). Fitted values for the village-level transmission intensity from snails to mammals appeared to be strongly spatially correlated, which is consistent with results from descriptive hierarchical analyses. CONCLUSIONS: Our results suggest that the process of acquiring mammalian S. japonicum infection is more important in explaining differences in prevalence of infection between villages than the process of snails becoming infected. Also, the contribution from water buffaloes to human S. japonicum infection in the Philippines is less important than has been recently observed for bovines in China. These findings have implications for the prioritization of mitigating interventions against S. japonicum transmission

    Structure of the Dynamic Model

    No full text
    <p>Subscripts denote species (<i>H</i>, human; <i>S</i>, snail; <i>X,</i> one of dog, cat, water buffalo, pig, or rat). Infection states are <i>E</i>, exposed and infected but not yet infectious; <i>H</i>, heavily infected; <i>I</i>, infected; <i>L</i>, lightly infected; and <i>S</i>, susceptible. Solid lines show the natural history of infection assumed for each species and dashed lines show the contribution by one species to the force-of-infection of another. The line below <i>I<sub>S</sub></i>, terminated by a small circle, indicates the death of infected snails. We assume that the birth rate of susceptible snails is equal to the death rate of infected snails to ensure a constant snail population size.</p
    corecore