48 research outputs found

    Causes and consequences of spatial variation in sex ratios in a declining bird species

    Get PDF
    1. Male-biased sex ratios occur in many bird species, particularly in those with small or declining populations, but the causes of these skews and their consequences for local population demography are rarely known. Within-species variation in sex ratios can help to identify the demographic and behavioural processes associated with such biases. 2. Small populations may be more likely to have skewed sex ratios if sex differences in survival, recruitment or dispersal vary with local abundance. Analyses of species with highly variable local abundances can help to identify these mechanisms and the implications for spatial variation in demography. Many migratory bird species are currently undergoing rapid and severe declines in abundance in parts of their breeding ranges, and thus have sufficient spatial variation in abundance to explore the extent of sex ratio biases, their causes and implications. 3. Using national-scale bird ringing data for one such species (willow warbler, Phylloscopus trochilus), we show that sex ratios vary greatly across Britain, and that male-biased sites are more frequent in areas of low abundance, which are now widespread across much of south and east England. These sex ratio biases are sufficient to impact local productivity, as the relative number of juveniles caught at survey sites declines significantly with increasing sex ratio skew. 4. Sex differences in survival could influence this sex ratio variation, but we find little evidence for sex differences in survival increasing with sex ratio skew. In addition, sex ratios have become male-biased over the last two decades but there are no such trends in adult survival rates for males or females. This suggests that lower female recruitment into low abundance sites is contributing to these skews. 5. These findings suggest that male-biased sex ratios in small and declining populations can arise through local-scale sex-differences in survival and dispersal, with females recruiting disproportionately into larger populations. Given the high level of spatial variation in population declines and abundance of many migratory bird species across Europe at present, male-biased small populations may be increasingly common. As singing males are the primary records used in surveys of these species, and as unpaired males often sing throughout the breeding season, local sex ratio biases could also be masking the true extent of these population declines

    Morphology, geographical variation and the subspecies of marsh tit Poecile palustris in Britain and central Europe

    Get PDF
    Capsule: All British Marsh Tits belong to subspecies Poecile palustris dresseri, being smaller than nominate P. p. palustris of central Europe. Aims: Determining the subspecies of Marsh Tit in Britain to test whether ssp. P. p. palustris occurs in northern England and Scotland, by assessing regional variation in size compared with central European birds. Methods: 1147 wing length and 250 tail length measurements from 953 Marsh Tits were compared between eight British locations to test for regional variation. Biometrics were compared between birds from Britain and six locations within the continental European range of ssp. palustris. Results: There was no regional variation in wing or tail lengths among British Marsh Tits, indicating that all resident birds belong to ssp. dresseri. There was no evidence supporting the existence of ssp. palustris in northern England. British birds were significantly smaller than those from continental Europe, with proportionately shorter tails, consistent across all age and sex classes. Conclusion: All British Marsh Tits should be considered as ssp. dresseri, with ssp. palustris being limited to continental Europe. With no evidence of regional variation in size within Britain, reliable sexing methods based on biometrics could be applied in demographic studies throughout the country

    A comparison of breeding bird numbers along canals with and without a close season for fishing

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:7218.47425(W193) / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    A comparison of breeding bird numbers along canals with and without a close season for fishing

    No full text
    A report to the Environment AgencySIGLEAvailable from British Library Document Supply Centre-DSC:2354.730(211) / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Can climate matching predict the current and future climatic suitability of the UK for the establishment of non-native birds?

    No full text
    Capsule: Current UK distributions of non-native birds poorly match areas identified as being climatically suitable.Aims: Non-native species are spreading at unprecedented rates and though invasions are expected to increase under climate change, evidence for this is mixed. We assess climatic suitability throughout the UK based on the apparent match to the climate in species' native ranges and investigate potential climatic limitation within the non-native range.Methods: Climate was characterized within polygons representing the native ranges of 167 potentially invasive species. Parts of the UK with current and future climate similar to that in the native range were deemed climatically suitable. The incidence of recent observations inside and outside suitable areas was used to test hypotheses about climatic limitation of non-native ranges.Results: Climate matching suggests that 69 of 167 non-native bird species could currently find climatically suitable areas for establishment in the UK. Future climate change would see this number increase by 14% by 2080. However, observed occurrences of non-native species in the UK were not significantly correlated to climatic suitability. Only 44 of the 69 species with suitable climate in the UK were present. Moreover, 85% of species observed in the UK had some UK occurrences in climatically unsuitable areas and for 57 species their entire UK range was in climatically unsuitable areas. Similar results were apparent for the subset of 12 species with established UK populations.Conclusions: Climate matching provides a relatively poor indication of the extent of current and future suitable areas because species can adapt to new climates or other factors constrain the native range and many climatically suitable areas are currently unoccupied. Improvements to climate matching techniques and ongoing surveillance are required to refine predictions to support effective management policies.</p
    corecore