142 research outputs found

    Interface Management: An approach to support IT-Managers in decision making

    Get PDF
    Information systems are critical assets for modern enterprises. They must be updated continuously to reflect business needs, leaving cumulative effects on the system complexity. Information systems are normally composed of multiple subsystems or components. Interfaces arise wherever one subsystem or component interacts with another. This interaction can be achieved through interoperation or integration. However, both require a comprehensive knowledge about existing interfaces, which suffer from lack of documentations. This, as a result, has bad influence on managing the interfaces and could lead to wrong decisions. In our research-in-progress, we point to the problems companies face with their interfaces and present our solution to support IT managers in taking decisions regarding the interfaces in each phase in their lifecycle. Managing the interfaces includes analysing dependencies and the attributes of interfaces with their weight and influence on assessing the related risk

    Novel avian DuckCeltTM-T17 cell line for production of viral vaccines : application to influenza viruses production

    Get PDF
    For the last 15 years, the viral vaccine manufacturing sector is looking for new producer cell lines, easily scalable, highly permissive to various viruses, and more effective in term of viral productivity. One critical characteristic for such cell lines is their ability to grow in suspension in serum free conditions at high cell densities. Regarding the pathogens under focus, influenza virus causing severe epidemics both in human and veterinary field is an important threat for world healthcare. The manufacturing sector is still demanding effective production processes to replace/supplement embryonated egg-based process and to provide efficient response to such threats. Cell-based production, with a focus on avian cell lines, is one of the promising solutions. Indeed, three avian cell lines ; namely duck EB66®cells (Vivalis), duck AGE.CR® cells (Probiogen) and quail QOR/2E11 cells (Baxter), are now competing with traditional mammalian cell platforms used for influenza vaccine productions (Vero and MDCK cells) and are currently at advance stage of commercial development for the manufacture of vaccine and biologicals [1]. The DuckCeltTM-T17 derived line presented here is a novel avian cell line developed by Transgene SA[2]. To generate immortalized duck cell lines, Transgene has used its proprietary DuckCelT technology which consisted in constitutively expressing the duck telomerase reverse transcriptase (dTERT) in primary embryo duck cells from spf eggs. DuckCeltTM-T17 cells were able to grow in batch suspension cultures and serum-free conditions up to 7 x 106 cell/ml and such growth was easily scalable in bioreactors up to 3L. Permissivity for different viruses including influenza has been evaluated. In the present study, DuckCeltTM-T17 cell line was tested for its abilities to produce various influenza strains from different origins; human, avian and porcine. All strains were satisfyingly produced with titres higher than 5.8 log TCID50/ml. H1N1 human strains and H5N2 and H7N1 avian strains were the most efficiently produced with highest titres reached of 8 log TCID50/ml. Porcine strains were also greatly rescued with titres of 4 to 7 log TCID50/ml depending of the subtypes. Interestingly, maximal titres are reached at 24h post-infection, allowing to have early harvest time. Process optimization on H1N1 2009 Human Pandemic strain allowed to identify best operating conditions for production (MOI, trypsin concentration, medium and density at infection) allowing to improve the production level by 2 log. 1. Meyer H-P, Scmidhalter DR: Industrial Scale Suspension Culture of Living Cells. 2014. 2. Balloul Jean-Marc, Duck cell line dedicated to the production of virus-based vaccines and therapeutic products BioProduction Optimization Workshop, September 22 & 23 2010 Frankfurt German

    An assessment of the dual-mode reactivity controlled compression ignition/conventional diesel combustion capabilities in a EURO VI medium-duty diesel engine fueled with an intermediate ethanol-gasoline blend and biodiesel

    Full text link
    This work investigates the capabilities of the dual-mode reactivity controlled compression ignition/conventional diesel combustion engine operation to cover the full operating range of a EURO VI medium-duty diesel engine with compression ratio of 17.5:1. This concept is based on covering all the engine map switching between the reactivity controlled compression ignition and the conventional diesel, combustion operating modes. Specifically, the benefits of reactivity controlled compression ignition combustion are exploited whenever possible according to certain restrictions, while the conventional diesel combustion operation is used to cover the zones of the engine map in which the reactivity controlled compression ignition operation is limited. The experiments were conducted using a single-cylinder research diesel engine derived from the multi-cylinder production engine. In addition, considering the mandatory presence of biofuels in the future context of road transport and the ability of ethanol to be blended with gasoline, the low reactivity fuel used in the study is a blend of 20% ethanol by volume with 80% of 95 octane number gasoline. Moreover, a diesel containing 7% of biodiesel has been used as high reactivity fuel. Firstly, a reactivity controlled compression ignition mapping is performed to check the operational limits of the concept in this engine platform. Later, based on the results, the potential of the dual-mode concept is discussed. Results suggest that, under the constraints imposed, reactivity controlled compression ignition combustion can be utilized between 25% and 35% load. In this region of the map, reactivity controlled compression ignition can provide up to 2% increased gross indicated efficiency than conventional diesel combustion, but led to lower efficiency at low engine speeds. In addition, it was demonstrated that the regeneration periods of the diesel particulate filter during dual-mode operation can be reduced more than twice, which entails a great reduction of the diesel fuel amount injected in the exhaust line.The authors acknowledge VOLVO Group Trucks Technology for supporting this research. The author J. Monsalve-Serrano thanks the Universitat Politecnica de Valencia for his predoctoral contract (FPI-S2-2015-1531), which is included within the framework of Programa de Apoyo para la Investigacitin y Desarrollo (PAID). Additionally, the authors also wish to thank Gabriel Alcantarilla from CMT - Motores Termicos for his technical work in adapting the test cell.Benajes Calvo, JV.; García Martínez, A.; Monsalve Serrano, J.; Balloul, I.; Pradel, G. (2016). An assessment of the dual-mode reactivity controlled compression ignition/conventional diesel combustion capabilities in a EURO VI medium-duty diesel engine fueled with an intermediate ethanol-gasoline blend and biodiesel. Energy Conversion and Management. 123:381-391. doi:10.1016/j.enconman.2016.06.059S38139112

    Evaluating the RCCI operating range limits in a high compression ratio medium-duty diesel engine fueled with biodiesel and ethanol

    Full text link
    [EN] This work investigates the load limits of reactivity controlled compression ignition combustion, a dual-fuel concept which combines port fuel injection of low-reactivity fuels with direct injection of diesel fuel, in a medium-duty diesel engine. The experiments were conducted in a single-cylinder diesel engine derived from the multi-cylinder production engine. In this sense, the stock turbocharger and exhaust gas recirculation systems were replaced by an external compressor and dedicated low-pressure exhaust gas recirculation loop, respectively. Additionally, a port fuel injector was installed in the intake manifold to allow gasoline injection. First, this article presents some results highlighting the effect of the exhaust gas recirculation rate, gasoline fraction, diesel start of injection, diesel injection strategy and intake temperature on the emissions, performance and combustion development in a representative operating condition: 1200r/min and 6.5bar indicated mean effective pressure (25% load). Later, with the aim of showing the reactivity controlled compression ignition potential, the best results in terms of performance and emissions at 25% load are compared against the multi-cylinder diesel engine from 950 to 2200r/min. Reactivity controlled compression ignition engine tests were developed taking into account limitations in nitrogen oxides (NOx) and soot emissions, in-cylinder pressure and maximum pressure rise rate. Finally, keeping the same constraints for testing, the load limits of reactivity controlled compression ignition concept are evaluated for all the engine speeds. Results suggest that reactivity controlled compression ignition allows fulfilling EURO VI limits for NOx and soot emissions without using selective catalytic reduction and diesel particulate filter aftertreatment systems at 25% load at all the engines speeds, providing better indicated efficiency than conventional diesel operation in most operating points. In addition, the maximum engine load that ensured the aforementioned constraints was around 35% for all the engine speeds, with a maximum indicated mean effective pressure of 8.8bar at 2200r/min. In this case, a strong reduction in carbon monoxide (CO) and unburned hydrocarbon (HC) emissions compared to the cases of 25% load was achieved at all the engine speeds.Benajes, J.; García Martínez, A.; Monsalve-Serrano, J.; Balloul, I.; Pradel, G. (2017). Evaluating the RCCI operating range limits in a high compression ratio medium-duty diesel engine fueled with biodiesel and ethanol. International Journal of Engine Research. 18(1-2):66-80. https://doi.org/10.1177/1468087416678500S6680181-2Yao, M., Zheng, Z., & Liu, H. (2009). Progress and recent trends in homogeneous charge compression ignition (HCCI) engines. Progress in Energy and Combustion Science, 35(5), 398-437. doi:10.1016/j.pecs.2009.05.001Maurya, R. K., & Agarwal, A. K. (2011). Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition (HCCI) combustion engine. Applied Energy, 88(4), 1169-1180. doi:10.1016/j.apenergy.2010.09.015Cerit, M., & Soyhan, H. S. (2013). Thermal analysis of a combustion chamber surrounded by deposits in an HCCI engine. Applied Thermal Engineering, 50(1), 81-88. doi:10.1016/j.applthermaleng.2012.06.004Singh, A. P., & Agarwal, A. K. (2012). Combustion characteristics of diesel HCCI engine: An experimental investigation using external mixture formation technique. Applied Energy, 99, 116-125. doi:10.1016/j.apenergy.2012.03.060Maurya, R. K., & Agarwal, A. K. (2011). Experimental investigation on the effect of intake air temperature and air–fuel ratio on cycle-to-cycle variations of HCCI combustion and performance parameters. Applied Energy, 88(4), 1153-1163. doi:10.1016/j.apenergy.2010.09.027Liu, H., Yao, M., Zhang, B., & Zheng, Z. (2008). Effects of Inlet Pressure and Octane Numbers on Combustion and Emissions of a Homogeneous Charge Compression Ignition (HCCI) Engine. Energy & Fuels, 22(4), 2207-2215. doi:10.1021/ef800197bBenajes, J., García, A., Domenech, V., & Durrett, R. (2013). An investigation of partially premixed compression ignition combustion using gasoline and spark assistance. Applied Thermal Engineering, 52(2), 468-477. doi:10.1016/j.applthermaleng.2012.12.025Benajes, J., Tormos, B., Garcia, A., & Monsalve-Serrano, J. (2014). Impact of Spark Assistance and Multiple Injections on Gasoline PPC Light Load. SAE International Journal of Engines, 7(4), 1875-1887. doi:10.4271/2014-01-2669Pastor, J. V., García-Oliver, J. M., García, A., Micó, C., & Durrett, R. (2013). A spectroscopy study of gasoline partially premixed compression ignition spark assisted combustion. Applied Energy, 104, 568-575. doi:10.1016/j.apenergy.2012.11.030Benajes, J., Molina, S., García, A., Monsalve-Serrano, J., & Durrett, R. (2014). Conceptual model description of the double injection strategy applied to the gasoline partially premixed compression ignition combustion concept with spark assistance. Applied Energy, 129, 1-9. doi:10.1016/j.apenergy.2014.04.093Benajes, J., Molina, S., García, A., Monsalve-Serrano, J., & Durrett, R. (2014). Performance and engine-out emissions evaluation of the double injection strategy applied to the gasoline partially premixed compression ignition spark assisted combustion concept. Applied Energy, 134, 90-101. doi:10.1016/j.apenergy.2014.08.008Kokjohn, S. L., Hanson, R. M., Splitter, D. A., & Reitz, R. D. (2009). Experiments and Modeling of Dual-Fuel HCCI and PCCI Combustion Using In-Cylinder Fuel Blending. SAE International Journal of Engines, 2(2), 24-39. doi:10.4271/2009-01-2647Klos, D., Janecek, D., & Kokjohn, S. (2015). Investigation of the Combustion Instability-NOx Tradeoff in a Dual Fuel Reactivity Controlled Compression Ignition (RCCI) Engine. SAE International Journal of Engines, 8(2), 821-830. doi:10.4271/2015-01-0841Kokjohn, S. L., Musculus, M. P. B., & Reitz, R. D. (2015). Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling. Combustion and Flame, 162(6), 2729-2742. doi:10.1016/j.combustflame.2015.04.009Kokjohn, S., Reitz, R. D., Splitter, D., & Musculus, M. (2012). Investigation of Fuel Reactivity Stratification for Controlling PCI Heat-Release Rates Using High-Speed Chemiluminescence Imaging and Fuel Tracer Fluorescence. SAE International Journal of Engines, 5(2), 248-269. doi:10.4271/2012-01-0375Kokjohn, S. L., Hanson, R. M., Splitter, D. A., & Reitz, R. D. (2011). Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion. International Journal of Engine Research, 12(3), 209-226. doi:10.1177/1468087411401548Desantes, J. M., Benajes, J., García, A., & Monsalve-Serrano, J. (2014). The role of the in-cylinder gas temperature and oxygen concentration over low load reactivity controlled compression ignition combustion efficiency. Energy, 78, 854-868. doi:10.1016/j.energy.2014.10.080Dempsey, A. B., Walker, N. R., & Reitz, R. D. (2013). Effect of Piston Bowl Geometry on Dual Fuel Reactivity Controlled Compression Ignition (RCCI) in a Light-Duty Engine Operated with Gasoline/Diesel and Methanol/Diesel. SAE International Journal of Engines, 6(1), 78-100. doi:10.4271/2013-01-0264Benajes, J., García, A., Pastor, J. M., & Monsalve-Serrano, J. (2016). Effects of piston bowl geometry on Reactivity Controlled Compression Ignition heat transfer and combustion losses at different engine loads. Energy, 98, 64-77. doi:10.1016/j.energy.2016.01.014Benajes, J., Pastor, J. V., García, A., & Monsalve-Serrano, J. (2015). An experimental investigation on the influence of piston bowl geometry on RCCI performance and emissions in a heavy-duty engine. Energy Conversion and Management, 103, 1019-1030. doi:10.1016/j.enconman.2015.07.047Pearson, R. J., & Turner, J. W. G. (2014). The role of alternative and renewable liquid fuels in environmentally sustainable transport. Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance, 19-51. doi:10.1533/9780857097422.1.19Benajes, J., Molina, S., García, A., & Monsalve-Serrano, J. (2015). Effects of low reactivity fuel characteristics and blending ratio on low load RCCI (reactivity controlled compression ignition) performance and emissions in a heavy-duty diesel engine. Energy, 90, 1261-1271. doi:10.1016/j.energy.2015.06.088Benajes, J., Molina, S., García, A., & Monsalve-Serrano, J. (2015). Effects of direct injection timing and blending ratio on RCCI combustion with different low reactivity fuels. Energy Conversion and Management, 99, 193-209. doi:10.1016/j.enconman.2015.04.046Benajes, J., Pastor, J. V., García, A., & Monsalve-Serrano, J. (2015). The potential of RCCI concept to meet EURO VI NOx limitation and ultra-low soot emissions in a heavy-duty engine over the whole engine map. Fuel, 159, 952-961. doi:10.1016/j.fuel.2015.07.064Payri, R., Climent, H., Salvador, F. J., & Favennec, A. G. (2004). Diesel Injection System Modelling. Methodology and Application for a First-generation Common Rail System. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218(1), 81-91. doi:10.1243/095440704322829191Payri, R., Salvador, F. J., Martí-Aldaraví, P., & Martínez-López, J. (2012). Using one-dimensional modeling to analyse the influence of the use of biodiesels on the dynamic behavior of solenoid-operated injectors in common rail systems: Detailed injection system model. Energy Conversion and Management, 54(1), 90-99. doi:10.1016/j.enconman.2011.10.004Payri, R., García, A., Domenech, V., Durrett, R., & Plazas, A. H. (2012). An experimental study of gasoline effects on injection rate, momentum flux and spray characteristics using a common rail diesel injection system. Fuel, 97, 390-399. doi:10.1016/j.fuel.2011.11.065Desantes, J. M., Payri, R., Pastor, J. M., & Gimeno, J. (2005). EXPERIMENTAL CHARACTERIZATION OF INTERNAL NOZZLE FLOW AND DIESEL SPRAY BEHAVIOR. PART I: NONEVAPORATIVE CONDITIONS. Atomization and Sprays, 15(5), 489-516. doi:10.1615/atomizspr.v15.i5.20Desantes, J. M., Pastor, J. V., Payri, R., & Pastor, J. M. (2005). EXPERIMENTAL CHARACTERIZATION OF INTERNAL NOZZLE FLOW AND DIESEL SPRAY BEHAVIOR. PART II: EVAPORATIVE CONDITIONS. Atomization and Sprays, 15(5), 517-544. doi:10.1615/atomizspr.v15.i5.30Payri, F., Olmeda, P., Martín, J., & García, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005Payri, F., Olmeda, P., Martin, J., & Carreño, R. (2014). A New Tool to Perform Global Energy Balances in DI Diesel Engines. SAE International Journal of Engines, 7(1), 43-59. doi:10.4271/2014-01-0665Ma, S., Zheng, Z., Liu, H., Zhang, Q., & Yao, M. (2013). Experimental investigation of the effects of diesel injection strategy on gasoline/diesel dual-fuel combustion. Applied Energy, 109, 202-212. doi:10.1016/j.apenergy.2013.04.01

    Zwitterionic polymer ligands: An ideal surface coating to totally suppress protein-nanoparticle corona formation?

    Get PDF
    International audienceIn the last few years, zwitterionic polymers have been developed as antifouling surface coatings. However, their ability to completely suppress protein adsorption at the surface of nanoparticles in complex biological media remains undemonstrated. Here we investigate the formation of hard (irreversible) and soft (reversible) protein corona around model nanoparticles (NPs) coated with sulfobetaine (SB), phosphorylcholine (PC) and carboxybetaine (CB) polymer ligands in model albumin solutions and in whole serum. We show for the first time a complete absence of protein corona around SB-coated NPs, while PC-and CB-coated NPs undergo reversible adsorption or partial aggregation. These dramatic differences cannot be described by naïve hard/soft acid/base electrostatic interactions. Single NP tracking in the cytoplasm of live cells corroborate these in vitro observations. Finally, while modification of SB polymers with additional charged groups lead to consequent protein adsorption, addition of small neutral targeting moieties preserves antifouling and enable efficient intracellular targeting

    Operating range extension of RCCI combustion concept from low to full load in a heavy-duty engine

    Full text link
    Fuel reactivity controlled compression ignition (RCCI) concept has arisen as a solution to control premixed combustion (PCI) strategies, which avoids soot and NOx formation by promoting a lean air fuel mixture and low temperature combustion. Thus, this study is focused on investigating the effects of different engine operating variables over combustion, to be able to suggest suitable strategies for extending the RCCI operation from low to full load, in a HD single-cylinder research engine. Different strategies are implemented at low, medium and high load, varying fuel and air reactivity, by means of parametrical studies. Performance and emissions results are analyzed combining engine testing with 3D-CFD modeling. Based on those results, an overlimit function is used to select the best engine settings for each operating point. Finally, engine emissions and performance results from that RCCI operation are compared with conventional Diesel combustion (CDC). Results suggest that double injection strategies should be used for RCCI operation from low to mid load. However, from high to full load operation, single injection strategies should be used, mainly to avoid excessive in-cylinder pressure gradients. In addition, it is confirmed the suitability of RCCI combustion to overcome the soot NOx trade-off characteristic of CDC, from 6 to 24 bar of BMEP, while improving fuel consumption.The authors would like to recognize the technical support from VOLVO Group Trucks Technology and to express their gratitude to CONVERGENT SCIENCE Inc. and IGNITE3D Engineer-ing GmbH for their kind support for performing the CFD calculations using CONVERGE software. In addition, thank the Spanish Ministry of Economy and Competitiveness for the financial support through Eduardo Belarte's grant (BES-2011-047073). The authors would also like to thank Gabriel Alcantarilla for the management of the facility and his assistance in data acquisition.Molina Alcaide, SA.; García Martínez, A.; Pastor Enguídanos, JM.; Belarte Mañes, E.; Balloul, I. (2015). Operating range extension of RCCI combustion concept from low to full load in a heavy-duty engine. Applied Energy. 143:211-227. https://doi.org/10.1016/j.apenergy.2015.01.035S21122714

    Poxvirus-based vaccine therapy for patients with advanced pancreatic cancer

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>An open-label Phase 1 study of recombinant prime-boost poxviruses targeting CEA and MUC-1 in patients with advanced pancreatic cancer was conducted to determine safety, tolerability and obtain preliminary data on immune response and survival.</p> <p>Patients and methods</p> <p>Ten patients with advanced pancreatic cancer were treated on a Phase I clinical trial. The vaccination regimen consisted of vaccinia virus expressing tumor antigens carcinoembryonic antigen (CEA) and mucin-1 (MUC-1) with three costimulatory molecules B7.1, ICAM-1 and LFA-3 (TRICOM) (PANVAC-V) and fowlpox virus expressing the same antigens and costimulatory molecules (PANVAC-F). Patients were primed with PANVAC-V followed by three booster vaccinations using PANVAC-F. Granulocyte-macrophage colony-stimulating factor (GM-CSF) was used as a local adjuvant after each vaccination and for 3 consecutive days thereafter. Monthly booster vaccinations for up to 12 months were provided for patients without progressive disease. Peripheral blood was collected before, during and after vaccinations for immune analysis.</p> <p>Results</p> <p>The most common treatment-related adverse events were mild injection-site reactions. Antibody responses against vaccinia virus was observed in all 10 patients and antigen-specific T cell responses were observed in 5 out of 8 evaluable patients (62.5%). Median overall survival was 6.3 months and a significant increase in overall survival was noted in patients who generated anti CEA- and/or MUC-1-specific immune responses compared with those who did not (15.1 vs 3.9 months, respectively; <it>P </it>= .002).</p> <p>Conclusion</p> <p>Poxvirus vaccination is safe, well tolerated, and capable of generating antigen-specific immune responses in patients with advanced pancreatic cancer.</p
    corecore