245 research outputs found

    Thermal behaviour of alum-(Rb) RbAl(SO4)2 · 12H2O from in-situ laboratory high-temperature X-ray powder diffraction data

    Get PDF
    The present work investigates in-situ the thermal behaviour of alum-(Rb), RbAl(SO4)2 · 12H2O, by high-temperature X-ray powder diffraction from 303 K to melting, which starts at 359 K and is completed, due to kinetics, at 363 K. The calculated a0 linear thermal expansion coefficient is 10.33(12) x 10-6 K-1 within the investigated thermal range. The k order parameter, which is the measure of the extension of the orientational disorder of the sulphate group, decreases from ca. 0.80 at 303 K to ca. 0.75 just before melting. This behaviour has been shown to depend on the need to keep the bond valence sum of the Rb+ cation, which coexists in both six- and seven-fold coordination, at a reasonable value of ca. 0.82 valence units

    Erionite-Na upon heating. Dehydration dynamics and exchangeable cations mobility

    Get PDF
    Erionite is a fibrous zeolite significantly more tumorigenic than crocidolite asbestos upon inhalation. In recent years, several papers have been published aimed at characterizing from the crystal-chemical point of view erionite fibres. As their toxicity has been ascribed to Fe acquired within the human body, studies aimed at characterizing the iron topochemistry have also been published, suggesting a possible important role played by the ionic exchange properties and cations mobility of this zeolite on developing carcinogenicity. Here we report the analysis results of the thermal behaviour of erionite-Na, which has been found to deviate significantly from that of erionite-K. This result is in contrast with the current scientific view that differences in weighted ionic potential, Si/Al ratio and size of exchangeable cations result in significantly different thermal behaviours, all those parameters being nearly identical or very similar in both species. The different mobility of the extraframework cations observed in erionite samples with dissimilar chemistry is of particular interest within the frame of the hypothesis that their biological activity could depend, apart from surface interactions, also on bulk effects

    Chemical and structural characterization of fibrous richterite with high environmental and health relevance from Libby, Montana (USA)

    Get PDF
    This study reports new structural and spectroscopic data of a sample of fibrous richterite from Libby, Montana (USA). The OH-stretching region was investigated by FT-IR. The spectrum showed, except for the typical absorption band at 3671 cm-1 assigned to the vibration of the O-H dipole bonded to three [6]Mg cations, a well developed band at 3658 cm-1 attributed to the M(1)+M(3)Fe2+ environment. The M(1)+M(3)Fe2+ occupancy calculated using the FT-IR data is in very good agreement with that obtained combining Mössbauer and EMP data. Fe3+ was only assigned at M(2) owing to the absence in FT-IR spectrum of absorption bands at Δ=-50 cm-1 from the tremolite reference band. Structural investigation was done by X-ray powder-diffraction using the Rietveld method. Cell parameters, fractional coordinates for all non-hydrogen atoms, and site scattering for M(1), M(2), M(3), M(4) and A were refined. The most relevant difference with respect to prismatic winchite is a general reduction of the cell parameters that is ascribed mainly to the higher fluorine content of fibrous richterite. Possible site occupancies were obtained by combining chemical data and Rietveld refinement results

    In situ high‑temperature behaviour and breakdown conditions of uvite at room pressure

    Get PDF
    The thermal behaviour of an uvite from San Piero in Campo (Elba Island, Italy) was investigated at room pressure through in situ high-temperature powder X-ray diffraction (PXRD), until the breakdown conditions were reached. The variation of uvite structural parameters (unit-cell parameters and mean bond distances) was monitored together with site occupancies and we observed the thermally induced Fe oxidation process counterbalanced by (OH)− deprotonation, which starts at 450 °C and is completed at 650 °C. The uvite breakdown reaction occurs between 800 and 900 °C. The breakdown products were identified at room temperature by PXRD and the breakdown reaction can be described as follows: tourmaline → indialite + yuanfuliite + plagioclase + “boron-mullite” phase + hematite

    The mechanism of iron binding processes in erionite fibres

    Get PDF
    Fibrous erionite-Na from Rome (Oregon, USA) was K-exchanged and characterized from the structural point of view. In addition, the modifications experienced after contact with a Fe(II) source were investigated for evaluating if the large potassium ions, blocking off nearly all the erionite cavity openings, might prevent the Fe(II) binding process, which is currently assumed to be one of the reasons of the toxicity of erionite. The K-exchanged sample had a 95% reduction of the BET surface area indicating that it behaves as a mesoporous material. Exchanged K is segregated at K2 and at OW sites commonly occupied by H2O. The latter K cations provide a relevant contribution to the reduction of the surface area. Surprisingly, despite the collapse of its surface area the sample preserves the tendency to bind Fe(II). Therefore, yet in the case of a peculiar and potentially hostile structural environment the Fe(II) ion-exchange process has essentially the same kinetics observed in a typical erionite sample. This is a clear evidence of the very limited effect of the chemical composition of erionite on the Fe(II) binding process and reasonably it does not play a significant role in its toxicity

    Prismatic to asbestiform offretite from Northern Italy. Occurrence, morphology and crystal-chemistry of a new potentially hazardous zeolite

    Get PDF
    A multi-methodological approach, based upon field investigation, morphological characterization, chemical analysis and structure refinement was applied to different samples of fibrous offretite, a new potentially hazardous zeolite recently discovered in northern Italy. Their morphology ranges from stocky-prismatic to asbestiform. All the investigated fibers may be considered as "inhalable", and they are well within the range of the "more carcinogenic fibers" regarding diameter. As regards the length, the main mode observed in the asbestiform samples is 20-25 mu m, and similar to 93% of the measured fibers are >5 mu m and may be significantly associated with carcinogenesis also in terms of lengths. The chemical-structural features of the investigated fibers are comparable: the extra-framework cations K+, Mg2+ and Ca2+ are present in all samples in similar proportions, and refined cell parameters are similar among the samples. Offretite occurs in 60% of the investigated sites, with an estimated amount up to 75 vol % of the associated minerals. The presence of this mineral could be of concern for risk to human health, especially if one considers the vast number of quarries and mining-related activities that are operating in the zeolite host rocks

    Piezoelectric effect and electroactive phase nucleation in self-standing films of unpoled PVDF nanocomposite films

    Get PDF
    Novel polymer-based piezoelectric nanocomposites with enhanced electromechanical properties open new opportunities for the development of wearable energy harvesters and sensors. This paper investigates how the dissolution of different types of hexahydrate metal salts affects β-phase content and piezoelectric response (d33) at nano-and macroscales of polyvinylidene fluoride (PVDF) nanocomposite films. The strongest enhancement of the piezoresponse is observed in PVDF nanocomposites processed with Mg(NO3)2·6H2O. The increased piezoresponse is attributed to the synergistic effect of the dipole moment associated with the nucleation of the electroactive phase and with the electrostatic interaction between the CF2group of PVDF and the dissolved salt through hydrogen bonding. The combination of nanofillers like graphene nanoplatelets or zinc oxide nanorods with the hexahydrate salt dissolution in PVDF results in a dramatic reduction of d33, because the nanofiller assumes a competitive role with respect to H-bond formation between PVDF and the dissolved metal salt. The measured peak value of d33reaches the local value of 13.49 pm/V, with an average of 8.88 pm/V over an area of 1 cm2. The proposed selection of metal salt enables low-cost production of piezoelectric PVDF nanocomposite films, without electrical poling or mechanical stretching, offering new opportunities for the development of devices for energy harvesting and wearable sensors

    HT breakdown of Mn-bearing elbaite from the Anjanabonoina pegmatite, Madagascar

    Get PDF
    The thermal behavior of a gem-quality purplish-red Mn-bearing elbaite from the Anjanabonoina pegmatite, Madagascar, with composition X(Na0.41□0.35Ca0.24)Σ1.00 Y(Al1.81Li1.00Fe3+ 0.04Mn3+ 0.02Mn2+ 0.12Ti0.004)Σ3.00 ZAl6[T(Si5.60B0.40)Σ6.00O18](BO3)3(OH)3 W[(OH)0.50F0.13O0.37]Σ1.00 was investigated using both in situ High-Temperature X-Ray powder diffraction (HT-pXRD) and ex situ X-Ray single-crystal diffraction (SC-XRD) on two single crystals previously heated in the air up to 750 and 850 °C. The first occurrence of mullite diffraction peaks allowed us to constrain the breakdown temperature of Mnbearing elbaite at ambient pressure, at 825 °C. The breakdown products from the HT-pXRD experiments were cooled down to ambient temperature and identified via pXRD, represented by B-mullite and γ-LiAlSi2O6. A thermally induced oxidation of Mn2+ to Mn3+ was observed with both in-situ and ex-situ techniques; it started at 470 °C and is assumed to be counterbalanced by deprotonation, according to the equation: Mn2+ + (OH)– → Mn3+ + O2– + 1/2H2. At temperatures higher than 752 °C, a partial disorder between the Y and Z sites is observed from unit-cell parameters and mean bond distances, possibly caused by the inter-site exchange mechanism YLi + ZAl → ZLi + YAl

    Chemical reactivity of thermal treated naturally occurring amphibole asbestos

    Get PDF
    Non-occupational (environmental) exposure to naturally occurring asbestos (NOA) represents a potentially important source of risk for human health in several parts of the world. Chemical reactivity of fibres surface is one of the most relevant physical-chemical property to asbestos toxicity and is commonly associateci to the presence of Fe at the surface, and in particular to its coordination and oxidation state. However, no detailed information is still available about dependence of chemical reactivity on surface iron topochemistry, which is the basis for defining structure-activity relationships. In this work the chemical reactivity of two amphibole asbestos samples, UICC crocidolite from Koegas Mine, Northern Cape (South Africa) and fibrous tremolite from Montgomery County, Maryland (USA), was investigateci after sample heating up to 1200 °c. Ex-situ X-ray powder diffraction (XRPS and the Rietveld method), scanning (SEM) and transmission (TEM) electron microscopy were used for characterizing the minerai fibres before and after the thermal treatment. In addition, thermal stability of the of the amphibole asbestos was analysed in-situ by TG/DSC. Two conventional target molecules (H202 and Hcoo-) and the DMPO spintrapping/ EPR technique were used to measure the radical activity of both pristine and thermal treated samples. Results show that, after thermal treatment, both amphibole asbestos are completely converted into hematite, cristobalite and pyroxene, stili preserving the originai fibrous morphology (pseudomorphosis). Notably, in spite of the thermal decomposition, the heated samples show a radical production comparable to that of the pristine ones

    Thermal behavior of schorl up to breakdown temperature at room pressure

    Get PDF
    Schorl is one of the most widespread tourmaline compositions in the world, known from many different geological settings. Its role as boron and water carrier has been moderately investigated together with its stability field. In this study, the richest schorl in Fe2+ content was investigated to constraint its breakdown temperature at room pressure through in situ powder X-Ray Diffraction (in situ pXRD), its breakdown products and the coupled thermally induced dehydrogenation-dehydrogenation process experienced approaching the breakdown conditions. Schorl turned out to begin its breakdown at 850 °C with the first appearance of hematite, followed by a dominant B-mullite phase. The breakdown reaction of schorl can be expressed as follows: 2NaFe2+3Al6(BO3)3Si6O18(OH)=3Fe2O3+4/3Al9Si2BO19+(Na- Si- B-rich) glass+4H2O.The breakdown process is completed at 950 °C, when no trace of residual tourmaline is found. Annealing the schorl at 450 °C in air was enough to set the Fe oxidation out, counterbalanced by the deprotonation reaction: (Fe2+)+(OH)- → (Fe3+)+ (O2-)+1/2H2(g)
    corecore