23 research outputs found

    Trans-Species Polymorphism and Selection in the MHC Class II DRA Genes of Domestic Sheep

    Get PDF
    Highly polymorphic genes with central roles in lymphocyte mediated immune surveillance are grouped together in the major histocompatibility complex (MHC) in higher vertebrates. Generally, across vertebrate species the class II MHC DRA gene is highly conserved with only limited allelic variation. Here however, we provide evidence of trans-species polymorphism at the DRA locus in domestic sheep (Ovis aries). We describe variation at the Ovar-DRA locus that is far in excess of anything described in other vertebrate species. The divergent DRA allele (Ovar-DRA*0201) differs from the sheep reference sequences by 20 nucleotides, 12 of which appear non-synonymous. Furthermore, DRA*0201 is paired with an equally divergent DRB1 allele (Ovar-DRB1*0901), which is consistent with an independent evolutionary history for the DR sub-region within this MHC haplotype. No recombination was observed between the divergent DRA and B genes in a range of breeds and typical levels of MHC class II DR protein expression were detected at the surface of leukocyte populations obtained from animals homozygous for the DRA*0201, DRB1*0901 haplotype. Bayesian phylogenetic analysis groups Ovar-DRA*0201 with DRA sequences derived from species within the Oryx and Alcelaphus genera rather than clustering with other ovine and caprine DRA alleles. Tests for Darwinian selection identified 10 positively selected sites on the branch leading to Ovar-DRA*0201, three of which are predicted to be associated with the binding of peptide antigen. As the Ovis, Oryx and Alcelaphus genera have not shared a common ancestor for over 30 million years, the DRA*0201 and DRB1*0901 allelic pair is likely to be of ancient origin and present in the founding population from which all contemporary domestic sheep breeds are derived. The conservation of the integrity of this unusual DR allelic pair suggests some selective advantage which is likely to be associated with the presentation of pathogen antigen to T-cells and the induction of protective immunity

    The genetic architecture of the MHC class II region in British Texel sheep

    Get PDF
    Understanding the structure of the major histocompatibility complex, especially the number and frequency of alleles, loci and haplotypes, is crucial for efficient investigation of the way in which the MHC influences susceptibility to disease. Nematode infection is one of the most important diseases suffered by sheep, and the class II region has been repeatedly associated with differences in susceptibility and resistance to infection. Texel sheep are widely used in many different countries and are relatively resistant to infection. This study determined the number and frequency of MHC class II genes in a small flock of Texel sheep. There were 18 alleles at DRB1, 9 alleles at DQA1, 13 alleles at DQB1, 8 alleles at DQA2 and 16 alleles at DQB2. Several haplotypes had no detectable gene products at DQA1, DQB1 or DQB2, and these were defined as null alleles. Despite the large numbers of alleles, there were only 21 distinct haplotypes in the population. The relatively small number of observed haplotypes will simplify finding disease associations because common haplotypes provide more statistical power but complicate the discrimination of causative mutations from linked marker loci

    Identification of epitopes recognised by mucosal CD4+ T-cell populations from cattle experimentally colonised with Escherichia coli O157:H7

    Get PDF
    Additional file 5. Sequence alignment of Intimin epitopes against Intimin sequences from non-O157 EHEC serotypes. Alignment of Intimin CD4+ T-cell epitope sequences with representative Intimin sequences from EHEC serotypes O145, O127, O26, O103, O121, O45 and O111. Percentage values indicate % similarity to the EHEC O157:H7 reference sequence

    Factors Associated with Bovine Neonatal Pancytopenia (BNP) in Calves: A Case-Control Study

    Get PDF
    Bovine neonatal pancytopenia (BNP; previously known as idiopathic haemorrhagic diathesis and commonly known as bleeding calf syndrome) is a novel haemorrhagic disease of young calves which has emerged in a number of European countries during recent years. Data were retrospectively collected during June to November 2010 for 56 case calves diagnosed with BNP between 17 March and 7 June of the same year. These were compared with 58 control calves randomly recruited from herds with no history of BNP. Multivariable logistic regression analysis showed that increased odds of a calf being a BNP case were associated with its dam having received PregSure¼ BVD (Pfizer Animal Health) vaccination prior to the birth of the calf (odds ratio (OR) 40.78, p<0.001) and its herd of origin being located in Scotland (OR 9.71, p = 0.006). Decreased odds of a calf being a BNP case were associated with the calf having been kept outside (OR 0.11, p = 0.006). The longer that a cattle herd had been established on the farm was also associated with decreased odds of a calf in that herd being a BNP case (OR 0.97, p = 0.011)

    Breadth of the CD4+ T cell response to Anaplasma marginale VirB9-1, VirB9-2 and VirB10 and MHC class II DR and DQ restriction elements

    Get PDF
    MHC class II molecules influence antigen-specific CD4(+) T-lymphocyte responses primed by immunization and infection. CD4(+) T-cell responses are important for controlling infection by many bacterial pathogens including Anaplasma marginale, and are observed in cattle immunized with the protective A. marginale outer membrane (OM) vaccine. Immunogenic proteins that comprise the protective OM vaccine include type IV secretion system (T4SS) proteins VirB9-1, VirB9-2, and VirB10, candidates for inclusion in a multi-epitope vaccine. Our goal was to determine the breadth of the VirB9-1, VirB9-2, and VirB10 T-cell response and MHC class II restriction elements in six cattle with different MHC class II haplotypes, defined by DRB3, DQA, and DQB allele combinations for each animal. Overlapping peptides spanning each T4SS protein were tested in T-cell proliferation assays with autologous antigen presenting cells (APC) and artificial APC expressing combinations of bovine DR and DQ molecules. Twenty immunostimulatory peptides were identified; three representing two or more epitopes in VirB9-1, ten representing eight or more epitopes in VirB9-2, and seven representing seven or more epitopes in VirB10. Of eight DRA/DRB3 molecules, four presented 15 peptides, which was biased as DRA/DRB3*1201 presented ten and DRA/DRB3*1101 presented four peptides. Four DQA/DQB molecules composed of two intrahaplotype and two interhaplotype pairs presented seven peptides, of which five were uniquely presented by DQ molecules. In addition,three functional mixed isotype (DQA/DRB3) restriction elements were identified. The immunogenicity and broad MHC class II presentation of multiple VirB9-1, VirB9-2, and VirB10 peptide epitopes justify their testing as a multi-epitope vaccine against A. marginale

    Fine-mapping host genetic variation underlying outcomes to Mycobacterium bovis infection in dairy cows

    Get PDF
    Abstract Background Susceptibility to Mycobacterium bovis infection in cattle is governed in part by host genetics. However, cattle diagnosed as infected with M. bovis display varying signs of pathology. The variation in host response to infection could represent a continuum since time of exposure or distinct outcomes due to differing pathogen handling. The relationships between host genetics and variation in host response and pathological sequelae following M. bovis infection were explored by genotyping 1966 Holstein-Friesian dairy cows at 538,231 SNPs with three distinct phenotypes. These were: single intradermal cervical comparative tuberculin (SICCT) test positives with visible lesions (VLs), SICCT-positives with undetected visible lesions (NVLs) and matched controls SICCT-negative on multiple occasions. Results Regional heritability mapping identified three loci associated with the NVL phenotype on chromosomes 17, 22 and 23, distinct to the region on chromosome 13 associated with the VL phenotype. The region on chromosome 23 was at genome-wide significance and candidate genes overlapping the mapped window included members of the bovine leukocyte antigen class IIb region, a complex known for its role in immunity and disease resistance. Chromosome heritability analysis attributed variance to six and thirteen chromosomes for the VL and NVL phenotypes, respectively, and four of these chromosomes were found to explain a proportion of the phenotypic variation for both the VL and NVL phenotype. By grouping the M. bovis outcomes (VLs and NVLs) variance was attributed to nine chromosomes. When contrasting the two M. bovis infection outcomes (VLs vs NVLs) nine chromosomes were found to harbour heritable variation. Regardless of the case phenotype under investigation, chromosome heritability did not exceed 8% indicating that the genetic control of bTB resistance consists of variants of small to moderate effect situated across many chromosomes of the bovine genome. Conclusions These findings suggest the host genetics of M. bovis infection outcomes is governed by distinct and overlapping genetic variants. Thus, variation in the pathology of M. bovis infected cattle may be partly genetically determined and indicative of different host responses or pathogen handling. There may be at least three distinct outcomes following M. bovis exposure in dairy cattle: resistance to infection, infection resulting in pathology or no detectable pathology

    Genetic and proteomic analysis of the MHC class I repertoire from four ovine haplotypes

    No full text
    Immunity to livestock diseases can be studied directly in the target animal, but its elucidation is often constrained by the lack of major histocompatibility complex (MHC)-defined animals. To address this issue, we have established an MHC-defined sheep resource flock generated around four diverse MHC haplotypes. Initial characterisation of the repertoire of transcribed MHC class I genes identified three class I transcripts associated with each haplotype. Nucleotide sequence, transcript abundance and phylogenetic analysis indicated that they represent alleles at up to four polymorphic loci that vary in number between the different haplotypes. The functional significance of each of these genes is evaluated here using complementary molecular genetic and proteomic approaches. We determine which genes give rise to proteins that localise to the surface of transfected cells. In addition, we provide data to support the generation of expressed products, based on immunoprecipitation of class I products from animals homozygous for each of the four MHC haplotypes followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. This provides a clearer picture of the number of MHC class I loci in sheep and allows more rational prediction of their classical (class Ia) or non-classical (class Ib) nature. On the basis of the cellular localisation, phylogenetic and transcriptional analyses, we propose that the ovine MHC comprises a minimum of eight class I loci, with considerable variation between haplotypes
    corecore