93 research outputs found

    Environmental proteomics reveals taxonomic and functional changes in an enriched aquatic ecosystem

    Get PDF
    Aquatic ecosystem enrichment can lead to distinct and irreversible changes to undesirable states. Understanding changes in active microbial community function and composition following organic matter loading in enriched ecosystems can help identify biomarkers of such state changes. In a field experiment, we enriched replicate aquatic ecosystems in the pitchers of the northern pitcher plant, Sarracenia purpurea. Shotgun metaproteomics using a custom metagenomic database identified proteins, molecular pathways, and contributing microbial taxa that differentiated control ecosystems from those that were enriched. The number of microbial taxa contributing to protein expression was comparable between treatments; however, taxonomic evenness was higher in controls. Functionally active bacterial composition differed significantly among treatments and was more divergent in control pitchers than in enriched pitchers. Aerobic and facultative anaerobic bacteria contributed most to identified proteins in control and enriched ecosystems, respectively. The molecular pathways and contributing taxa in enriched pitcher ecosystems were similar to those found in larger enriched aquatic ecosystems and are consistent with microbial processes occurring at the base of detrital food webs. Detectable differences between protein profiles of enriched and control ecosystems suggest that a time series of environmental proteomics data may identify protein biomarkers of impending state changes to enriched states

    The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella

    Get PDF
    In humans, seven evolutionarily conserved genes that cause the cilia-related disorder Bardet-Biedl syndrome (BBS) encode proteins that form a complex termed the BBSome. The function of the BBSome in the cilium is not well understood. We purified a BBSome-like complex from Chlamydomonas reinhardtii flagella and found that it contains at least BBS1, -4, -5, -7, and -8 and undergoes intraflagellar transport (IFT) in association with a subset of IFT particles. C. reinhardtii insertional mutants defective in BBS1, -4, and -7 assemble motile, full-length flagella but lack the ability to phototax. In the bbs4 mutant, the assembly and transport of IFT particles are unaffected, but the flagella abnormally accumulate several signaling proteins that may disrupt phototaxis. We conclude that the BBSome is carried by IFT but is an adapter rather than an integral component of the IFT machinery. C. reinhardtii BBS4 may be required for the export of signaling proteins from the flagellum via IFT

    Abelson Phosphorylation of CLASP2 Modulates its Association With Microtubules and Actin

    Get PDF
    The Abelson (Abl) non-receptor tyrosine kinase regulates the cytoskeleton during multiple stages of neural development, from neurulation, to the articulation of axons and dendrites, to synapse formation and maintenance. We previously showed that Abl is genetically linked to the microtubule (MT) plus end tracking protein (+TIP) CLASP in Drosophila. Here we show in vertebrate cells that Abl binds to CLASP and phosphorylates it in response to serum or PDGF stimulation. In vitro, Abl phosphorylates CLASP with a Km of 1.89 Β΅M, indicating that CLASP is a bona fide substrate. Abl-phosphorylated tyrosine residues that we detect in CLASP by mass spectrometry lie within previously mapped F-actin and MT plus end interaction domains. Using purified proteins, we find that Abl phosphorylation modulates direct binding between purified CLASP2 with both MTs and actin. Consistent with these observations, Abl-induced phosphorylation of CLASP2 modulates its localization as well as the distribution of F-actin structures in spinal cord growth cones. Our data suggest that the functional relationship between Abl and CLASP2 is conserved and provides a means to control the CLASP2 association with the cytoskeleton. Β© 2014 The Authors. Cytoskeleton Published by Wiley Periodicals, Inc

    Profiling Y561-Dependent and -Independent Substrates of CSF-1R in Epithelial Cells

    Get PDF
    Receptor tyrosine kinases (RTKs) activate multiple downstream cytosolic tyrosine kinases following ligand stimulation. SRC family kinases (SFKs), which are recruited to activated RTKs through SH2 domain interactions with RTK autophosphorylation sites, are targets of many subfamilies of RTKs. To date, there has not been a systematic analysis of the downstream substrates of such receptor-activated SFKs. Here, we conducted quantitative mass spectrometry utilizing stable isotope labeling (SILAC) analysis to profile candidate SRC-substrates induced by the CSF-1R tyrosine kinase by comparing the phosphotyrosine-containing peptides from cells expressing either CSF-1R or a mutant form of this RTK that is unable to bind to SFKs. This analysis identified previously uncharacterized changes in tyrosine phosphorylation induced by CSF-1R in mammary epithelial cells as well as a set of candidate substrates dependent on SRC recruitment to CSF-1R. Many of these candidates may be direct SRC targets as the amino acids flanking the phosphorylation sites in these proteins are similar to known SRC kinase phosphorylation motifs. The putative SRC-dependent proteins include known SRC substrates as well as previously unrecognized SRC targets. The collection of substrates includes proteins involved in multiple cellular processes including cell-cell adhesion, endocytosis, and signal transduction. Analyses of phosphoproteomic data from breast and lung cancer patient samples identified a subset of the SRC-dependent phosphorylation sites as being strongly correlated with SRC activation, which represent candidate markers of SRC activation downstream of receptor tyrosine kinases in human tumors. In summary, our data reveal quantitative site-specific changes in tyrosine phosphorylation induced by CSF-1R activation in epithelial cells and identify many candidate SRC-dependent substrates phosphorylated downstream of an RTK

    Protein mass spectrometry detects multiple bloodmeals for enhanced Chagas disease vector ecology

    Get PDF
    Ecohealth-based approaches have been recognized as a sustainable method of Chagas disease control. Bloodmeal data and vector prevalence of various hosts fosters an understanding of local vector ecology and behavior. This detailed paper provides validation of the ability to detect multiple bloodmeals using synthetic hemoglobin reference peptides (SRPs) that differ among the previously reported most common bloodmeals. The study shows the superior ability of hemoglobin peptide-based LC-MS/MS to detect and identify Chagas disease vector bloodmeal sources (of field-collected Triatomine vectors from Guatemala), compared to classical DNA-based polymerase chain reaction (PCR)

    Detection of cell surface ligands for human synovial Ξ³Ξ΄ T cells.

    Get PDF
    Lack of understanding of the nature and physiological regulation of Ξ³Ξ΄ T cell ligands has considerably hampered full understanding of the function of these cells. We developed an unbiased approach to identify human Ξ³Ξ΄ T cells ligands by the production of a soluble TCR-Ξ³Ξ΄ (sTCR-Ξ³Ξ΄) tetramer from a synovial VΞ΄1 Ξ³Ξ΄ T cell clone from a Lyme arthritis patient. The sTCR-Ξ³Ξ΄ was used in flow cytometry to initially define the spectrum of ligand expression by both human tumor cell lines and certain human primary cells. Analysis of diverse tumor cell lines revealed high ligand expression on several of epithelial or fibroblast origin, whereas those of hematopoietic origin were largely devoid of ligand. This allowed a bioinformatics-based identification of candidate ligands using RNAseq data from each tumor line. We further observed that whereas fresh monocytes and T cells expressed low to negligible levels of TCR-Ξ³Ξ΄ ligands, activation of these cells resulted in upregulation of surface ligand expression. Ligand upregulation on monocytes was partly dependent upon IL-1Ξ². The sTCR-Ξ³Ξ΄ tetramer was then used to bind candidate ligands from lysates of activated monocytes and analyzed by mass spectrometry. Surface TCR-Ξ³Ξ΄ ligand was eliminated by treatment with trypsin or removal of glycosaminoglycans, and also suppressed by inhibition of endoplasmic reticulum-Golgi transport. Of particular interest was that inhibition of glycolysis also blocked TCR-Ξ³Ξ΄ ligand expression. These findings demonstrate the spectrum of ligand(s) expression for human synovial VΞ΄1 Ξ³Ξ΄ T cells as well as the physiology that regulates their expression. Copyright Β© 2019 The Authors

    A Small-Molecule Inhibitor of T. gondii Motility Induces the Posttranslational Modification of Myosin Light Chain-1 and Inhibits Myosin Motor Activity

    Get PDF
    Toxoplasma gondii is an obligate intracellular parasite that enters cells by a process of active penetration. Host cell penetration and parasite motility are driven by a myosin motor complex consisting of four known proteins: TgMyoA, an unconventional Class XIV myosin; TgMLC1, a myosin light chain; and two membrane-associated proteins, TgGAP45 and TgGAP50. Little is known about how the activity of the myosin motor complex is regulated. Here, we show that treatment of parasites with a recently identified small-molecule inhibitor of invasion and motility results in a rapid and irreversible change in the electrophoretic mobility of TgMLC1. While the precise nature of the TgMLC1 modification has not yet been established, it was mapped to the peptide Val46-Arg59. To determine if the TgMLC1 modification is responsible for the motility defect observed in parasites after compound treatment, the activity of myosin motor complexes from control and compound-treated parasites was compared in an in vitro motility assay. TgMyoA motor complexes containing the modified TgMLC1 showed significantly decreased motor activity compared to control complexes. This change in motor activity likely accounts for the motility defects seen in the parasites after compound treatment and provides the first evidence, in any species, that the mechanical activity of Class XIV myosins can be modulated by posttranslational modifications to their associated light chains
    • …
    corecore