22 research outputs found

    Detection of the MYD88 p.L265P Mutation in the CSF of a Patient With Secondary Central Nervous System Lymphoma

    Get PDF
    Primary Central Nervous System Lymphoma (PCNSL) and Metastatic (or Secondary) Central Nervous System Lymphoma (MCNSL) are rare central nervous system (CNS) malignancies that exhibit aggressive clinical behavior and have a poor prognosis. The majority of CNS lymphomas are histologically classified as diffuse large-B cell lymphoma (DLBCL). DLBCL harbors a high frequency of mutations in MYD88 and CD79b. The MYD88 p.L265P mutation occurs at high frequency in CNS lymphoma and is extremely rare in non-hematologic malignancies. Currently, brain biopsy is considered the gold standard for CNS lymphoma diagnosis. However, brain biopsy is invasive, carries a risk of complications, and can delay initiation of systemic therapy. Circulating tumor DNA (ctDNA) in the cerebrospinal fluid (CSF) can be utilized to detect tumor-derived mutations. Testing of CSF-ctDNA is a minimally-invasive methodology that can be used to assess the genomic alterations present in CNS malignancies. We present a case of an 82-year-old man with a history of testicular lymphoma who presented with speech difficulty and a multifocal enhancing left inferior frontal mass. Analysis for both CSF-cytology and flow cytometry did not show evidence of neoplastic cells. A brain biopsy was performed and microscopic examination showed DLBCL. We isolated CSF-ctDNA and used droplet digital PCR (ddPCR) to detect the most common lymphoma-associated mutations in MYD88, L265P, and V217F. In conjunction, we evaluated the patient-matched CNS lymphoma tissue for MYD88 mutations. We detected the MYD88 p.L265P mutation in formalin fixed paraffin embedded (FFPE) tissue from the brain biopsy and the CSF-ctDNA. In contrast, both the tumor tissue and the CSF ctDNA were negative for the MYD88 p.V217F mutation. This study shows that testing CSF ctDNA for MYD88 mutations is a potentially minimally-invasive approach to diagnosing patients with suspected CNS lymphomas

    Primary Leptomeningeal Oligodendroglioma, IDH-Mutant, 1p/19q-Codeleted

    Get PDF
    We present a case of a 43-year-old woman with a history of headaches and blurry vision. Ophthalmologic examination identified papilledema. MR imaging demonstrated a right parietal region mass with patchy areas of contrast enhancement and focal calcifications. Intraoperative examination and exploration revealed an extra-axial mass with no apparent parenchymal involvement. Microscopic examination revealed solid sheets of tumor cells with clear cell cytologic features and no discernable intra-parenchymal tumor component. Molecular studies demonstrated the presence of IDH1 IDH1 c.395G>A p.R132H and CIC c.601C>T p.R281W mutations and 1p/19q codeletion. The radiographic features, gross appearance, and microscopic and molecular characteristics of the mass support the diagnosis of primary leptomeningeal oligodendroglioma, IDH-mutant, 1p/19-codeleted. This case represents one of a very few reported instances of molecularly-defined solitary, primary, intracranial oligodendroglioma, without definitive involvement of the brain parenchyma

    Increased 5-hydroxymethylcytosine and decreased 5-methylcytosine are indicators of global epigenetic dysregulation in diffuse intrinsic pontine glioma

    Get PDF
    Introduction Diffuse intrinsic pontine glioma (DIPG) is a malignant pediatric brain tumor associated with dismal outcome. Recent high-throughput molecular studies have shown a high frequency of mutations in histone-encoding genes (H3F3A and HIST1B) and distinctive epigenetic alterations in these tumors. Epigenetic alterations described in DIPG include global DNA hypomethylation. In addition to the generally repressive methylcytosine DNA alteration, 5-hydroxymethylation of cytosine (5hmC) is recognized as an epigenetic mark associated with active chromatin. We hypothesized that in addition to alterations in DNA methylation, that there would be changes in 5hmC. To test this hypothesis, we performed immunohistochemical studies to compare epigenetic alterations in DIPG to extrapontine adult and pediatric glioblastoma (GBM) and normal brain. A total of 124 tumors were scored for histone 3 lysine 27 trimethylation (H3K27me3) and histone 3 lysine 9 trimethylation (H3K9me3) and 104 for 5hmC and 5-methylcytosine (5mC). An H-score was derived by multiplying intensity (0–2) by percentage of positive tumor nuclei (0-100%). Results We identified decreased H3K27me3 in the DIPG cohort compared to pediatric GBM (p \u3c 0.01), adult GBM (p \u3c 0.0001) and normal brain (p \u3c 0.0001). H3K9me3 was not significantly different between tumor types. Global DNA methylation as measured by 5mC levels were significantly lower in DIPG compared to pediatric GBM (p \u3c 0.001), adult GBM (p \u3c 0.01), and normal brain (p \u3c 0.01). Conversely, 5hmC levels were significantly higher in DIPG compared to pediatric GBM (p \u3c 0.0001) and adult GBM (p \u3c 0.0001). Additionally, in an independent set of DIPG tumor samples, TET1 andTET3 mRNAs were found to be overexpressed relative to matched normal brain. Conclusions Our findings extend the immunohistochemical study of epigenetic alterations in archival tissue to DIPG specimens. Low H3K27me3, decreased 5mC and increased 5hmC are characteristic of DIPG in comparison with extrapontine GBM. In DIPG, the relative imbalance of 5mC compared to 5hmC may represent an opportunity for therapeutic intervention

    Concurrent IDH1 and IDH2 mutations in glioblastoma: A case report

    Get PDF
    Isocitrate dehydrogenase (IDH) mutations are cornerstone diagnostic features in glioma classification. IDH mutations are typically characterized by mutually exclusive amino acid substitutions in the genes encoding for the IDH1 and the IDH2 enzyme isoforms. We report our institutional case of a diffuse astrocytoma with progression to secondary glioblastoma and concurrent IDH1/IDH2 mutations. A 49-year-old male underwent a subtotal resection of a lobular lesion within the right insula in 2013, revealing a WHO grade 3 anaplastic oligoastrocytoma, IDH1 mutated, 1p19q intact. Symptomatic tumor progression was suspected in 2018, leading to a surgical tumor biopsy that demonstrated WHO grade 4 IDH1 and IDH2 mutant diffuse astrocytoma. The patient subsequently underwent surgical resection followed by medical management and finally died in 2021. Although concurrent IDH1/IDH2 mutations have been rarely reported in the current literature, further study is required to better define their impact on patients’ prognoses and their response to targeted therapies

    Assessment of Glioblastoma Response in the Era of Bevacizumab: Longstanding and Emergent Challenges in the Imaging Evaluation of Pseudoresponse

    Get PDF
    Glioblastoma is the deadliest primary malignant brain neoplasm, and despite the availability of many treatment options, its prognosis remains somber. Enhancement detected by magnetic resonance imaging (MRI) was considered the best imaging marker of tumor activity in glioblastoma for decades. However, its role as a surrogate marker of tumor viability has changed with the appearance of new treatment regimens and imaging modalities. The antiangiogenic therapy created an inflection point in the imaging assessment of glioblastoma response in clinical trials and clinical practice. Although BEV led to the improvement of enhancement, it did not necessarily mean tumor response. The decrease in the enhancement intensity represents a change in the permeability properties of the blood brain barrier, and presumably, the switch of the tumor growth pattern to an infiltrative non-enhancing phenotype. New imaging techniques for the assessment of cellularity, blood flow hemodynamics, and biochemistry have emerged to overcome this hurdle; nevertheless, designing tools to assess tumor response more accurately, and in so doing, improve the assessment of response to standard of care (SOC) therapies and to novel therapies, remains challenging

    Immunohistochemical and Molecular Features of Melanomas Exhibiting Intratumor and Intertumor Histomorphologic Heterogeneity

    Get PDF
    Melanoma is a heterogeneous neoplasm at the histomorphologic, immunophenotypic, and molecular levels. Melanoma with extreme histomorphologic heterogeneity can pose a diagnostic challenge in which the diagnosis may predominantly rely on its immunophenotypic profile. However, tumor survival and response to therapy are linked to tumor genetic heterogeneity rather than tumor morphology. Therefore, understating the molecular characteristics of such melanomas become indispensable. In this study, DNA was extracted from 11 morphologically distinct regions in eight formalin-fixed, paraffin-embedded melanomas. In each region, mutations in 50 cancer-related genes were tested using next-generation sequencing (NGS). A tumor was considered genetically heterogeneous if at least one non-overlapping mutation was identified either between the histologically distinct regions of the same tumor (intratumor heterogeneity) or among the histologically distinct regions of the paired primary and metastatic tumors within the same patient (intertumor heterogeneity). Our results revealed that genetic heterogeneity existed in all tumors as non-overlapping mutations were detected in every tested tumor (n = 5, 100%; intratumor: n = 2, 40%; intertumor: n = 3, 60%). Conversely, overlapping mutations were also detected in all the tested regions (n = 11, 100%). Melanomas exhibiting histomorphologic heterogeneity are often associated with genetic heterogeneity, which might contribute to tumor survival and poor response to therapy

    Morphologic characteristics and immunohistochemical profile of diffuse intrinsic pontine gliomas.

    No full text
    Tumors of the CNS are the second most common malignancy in children. In particular, diffuse intrinsic pontine gliomas (DIPGs) are aggressive tumors with poor prognosis and account for 10–25% of pediatric brain tumors. The majority of DIPGs are astrocytic, infiltrative and localized to the pons. Studies have shown median survival times of less than a year with 90% of children dying within 2 years. We built multi-tissue arrays with 24 post-mortem DIPG samples and analyzed the morphology and expression of several proteins (p53, EGFR, GFAP, MIB1, BMI1, B-catenin, p16, Nanog, Nestin, OCT4, OLIG2, Sox2) with the goal of identifying potential treatment targets and improving our understanding of the biology of these tumors. The majority of DIPGs were high-grade gliomas (22) with 18 cases having features of glioblastoma (WHO grade IV), and 4 cases with high-grade features consistent with anaplastic astrocytoma (WHO grade-III). One case was low grade (WHO grade II) and one case showed intermediate features between a grade II and grade III glioma (low mitotic rate, but increased cellularity and cell atypia), being difficult to grade precisely.. The majority of the tumors were positive for GFAP (24/24), MIB1 (23/24), OLIG2 (22/24), p16 (20/24), p53 (20/24), Sox2 (19/24), EGFR (16/24) and BMI1 (9/24). Our results suggest that dysregulation of EGFR and p53 may play an important role in the development of DIPGs. The majority of DIPGs express stem cell makers such as SOX2 and OLIG2, consistent with a role for tumor stem cells in the origin and maintenance of these tumors. Targeted therapies against these proteins could be beneficial in treatment
    corecore