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Abstract: Melanoma is a heterogeneous neoplasm at the histomorphologic, immunophenotypic,
and molecular levels. Melanoma with extreme histomorphologic heterogeneity can pose a diagnostic
challenge in which the diagnosis may predominantly rely on its immunophenotypic profile. However,
tumor survival and response to therapy are linked to tumor genetic heterogeneity rather than tumor
morphology. Therefore, understating the molecular characteristics of such melanomas become
indispensable. In this study, DNA was extracted from 11 morphologically distinct regions in eight
formalin-fixed, paraffin-embedded melanomas. In each region, mutations in 50 cancer-related
genes were tested using next-generation sequencing (NGS). A tumor was considered genetically
heterogeneous if at least one non-overlapping mutation was identified either between the histologically
distinct regions of the same tumor (intratumor heterogeneity) or among the histologically distinct
regions of the paired primary and metastatic tumors within the same patient (intertumor heterogeneity).
Our results revealed that genetic heterogeneity existed in all tumors as non-overlapping mutations
were detected in every tested tumor (n = 5, 100%; intratumor: n = 2, 40%; intertumor: n = 3,
60%). Conversely, overlapping mutations were also detected in all the tested regions (n = 11, 100%).
Melanomas exhibiting histomorphologic heterogeneity are often associated with genetic heterogeneity,
which might contribute to tumor survival and poor response to therapy.

Keywords: melanoma; histophenotypic heterogeneity; tumor heterogeneity; next-generation sequencing;
driver mutations
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1. Introduction

Melanoma is one of the most heterogeneous neoplasms at both the histophenotypic and molecular
levels. Melanomas often exhibit histophenotypic and molecular variations, both within the same
tumor (intratumor) and between different tumors from the same patient (intertumor) [1]. The degree of
histophenotypic variation can range from mild and focal changes to complete non-overlapping features
of distinct histophenotypes, referred to as histophenotypic plasticity. This variation in histology and
immunohistochemical expression of melanoma poses a diagnostic challenge that can alter disease
stage and therapy.

At the molecular level, melanoma can be classified into four main types: v-Raf murine sarcoma viral
oncogene homolog B (BRAF)-mutant, neuroblastoma RAS viral oncogene homology (NRAS)-mutant,
neurofibromatosis type 1 (NF1)-mutant, and triple-negative or wild-type melanoma [1]. Mutations
in BRAF, particularly BRAF p.V600E, are the most commonly detected mutations in melanoma [2–6],
followed by mutations in NRAS [7–10] and NF1 [11]. However, melanoma can exhibit intratumor and
intertumor heterogeneity that may manifest at the genome, epigenome, or transcriptome level.

Although both histophenotypic plasticity and tumor heterogeneity of melanoma are well
recognized, their relationship is not well explored. Therefore, we interrogated the molecular
characteristics of a series of cutaneous melanomas exhibiting extreme intertumor and intratumor
histomorphologic heterogeneity using region-specific next-generation sequencing (NGS) in an attempt
to unmask the underlying tumor heterogeneity and to search for cancer-associated driver mutations
that may play a helpful diagnostic or therapeutic role and may predict disease outcome.

2. Results

2.1. Clinicopathological Characteristics of Patients and Tumors Evaluated by NGS

The demographic, clinical characteristics, and disease outcome of the five patients are summarized
in Table 1. Only one patient had a known history of therapy prior to sample collection (patient
4). Two patients (patients 1 and 2) had only a primary melanoma evaluated, and three patients
(patients 3–5) had both a primary melanoma and a metastatic melanoma evaluated. All the primary
melanomas were treated with wide local excision and sentinel lymphadenectomy. Complications
included microsatellitosis (1.8 mm in largest dimension) identified in one patient (patient 3, 20%),
regional nodal metastasis identified in three patients (patients 3–5, 60%), and distant metastases that
developed during follow-up after initial surgical treatment in two patients (patients 1 and 4).

Histologically, all five primary melanomas exhibited a vertical growth phase that extended to the
reticular dermis (Clark level IV; patients 2–4, 60%) and to the subcutaneous fat (Clark level V; patients
1 and 5, 40%), with a mean Breslow thickness of 5.14 mm (range: 1.2–12 mm) and mean mitotic rate of
five mitoses per mm2 (range: 2–14 mitoses per mm2); however, no regression or brisk tumor-infiltrating
lymphocytes was detected. Immunohistochemical studies revealed discordant patterns in expression
of at least one melanocytic marker in four cases (patients 1–3 and 5, 80%), among whom a complete loss
of at least one melanocytic marker was observed in two patients (patients 2 and 5, 50%). Alternatively,
concordant pattern in expression of all the tested melanocytic markers was present in only one case
(patient 4, 20%) (Table 2).
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Table 1. Demographic and clinical characteristics of the patients with melanomas analyzed by next-generation sequencing (NGS). Abbreviations: SLN, sentinel lymph
node; M, male; WLE, wide local excision; F, female.

Patient Age/Sex Tumor Site(s) SLN Metastasis Treatment and Disease Outcome

Primary lesion only

1 79/M Left occipital scalp No WLE with negative margins.
Multiple metastases in the lung detected 5 months after the initial diagnosis.
Pembrolizumab 200 mg/mm2 + albumin-bound paclitaxel (Abraxane) 200 mg/mm2

for 6 one-month cycles.
Hepatic and ischial bone metastases detected 11 months after the initial diagnosis.
At last follow-up, 21 months after the initial diagnosis, the patient was alive with
stable metastatic disease.

2 70/M Left clavicular area No WLE with negative margins.
At last follow-up, 20 months after the initial diagnosis, the patient was disease-free.

Paired primary tumor and metastatic lesion

3 72/M Primary: right forehead

Metastasis: right intraparotid lymph node

No WLE with negative margins.
Nivolumab therapy was initiated, but the patient was lost to follow-up and died of
unknown cause 12 months after the initial diagnosis.

4 81/F Primary: plantar surface of right foot

Metastasis: right groin lymph node

Yes WLE with negative margins.
Nivolumab × 6 cycles.
Metastasis to right pelvic soft tissue was detected 21 months after the initial
diagnosis.

5 75/M Primary: Left lateral arm

Metastasis: Left lateral forearm (in-transit)

Yes Treatment and follow-up not available.
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Table 2. Histopathologic, immunohistochemical, and molecular findings of the melanomas analyzed by next-generation sequencing. Abbreviations: PanMel,
Pan-melanocytic cocktail; PRI, primary; MET, metastatic, LVI, lymphovascular invasion; PNI, perineural invasion; LMM, Lentigo maligna melanoma; SSM, superficial
spreading melanoma; ALM, acral lentiginous melanoma; NM, nodular melanoma.

Case Histologic Subtype
Immunohistochemical Profile Breslow Thickness (PRI) or

Largest Dimension (MET) in mm
Mitoses
Per mm2

Ulceration
Width in mm

LVI/PNI
(PRI Only) Detected Mutations

Morphology S100 SOX10 PanMel HMB-45 Melan-A

Primary lesion only

1 LMM Nevoid + + + + + 7.1 5 - +/+ NRAS, TP53, APC, KDR

Spindled + + + (focal) - - NRAS, TP53, KDR

2 SSM Epithelioid + + + + (patchy) + (patchy) 2.3 2 - -/+ TP53, CDKN2A, STK11

Spindled + (patchy) + - - - TP53, CDKN2A

Paired primary and metastatic lesions

3 SSM Primary: Epithelioid + + + + + 1.2 3 - -/- BRAF, TP53, ATM

Metastasis: Rhabdoid + (patchy) + (patchy) + (patchy) + (focal) - 1.3 BRAF, TP53, ATM, RAC1

4 ALM Primary: Epithelioid + + + + + 3.1 6 0.1 +/- KIT, HNFA1

Metastasis: Foamy/balloon-like + + + NA + 60 KIT, APC

5 NM Primary: Epithelioid + + + + + 12 14 18 +/+ NRAS, TP53, CTNNB1

Primary: Rhabdoid + (patchy) - - - + (focal) NRAS, TP53

Metastasis: Myxoid stroma + (focal) + (patchy) - - + (weak) 1.6 NRAS, TP53, STK11



Cancers 2019, 11, 1714 5 of 13

2.2. Histopathologic, Immunohistochemical, and Molecular Characteristics by Patient

In primary melanomas, the tumor of patient 1 had nevoid and spindled regions (Figure 1, patient
1, A and B, respectively). S100 and SOX10 exhibited diffuse expression in both regions, whereas
pan-melanocytic cocktail exhibited diffuse expression in the nevoid region and focal expression in the
spindled region. HMB-45 antigen and Melan-A were positive only in the nevoid region (Figure 1,
patient 1, A1–A5 and B1–B5, respectively). NRAS, TP53, and KDR mutations were detected in both
regions, whereas APC mutation was detected only in the nevoid region. The tumor of patient 2 had
superficial epithelioid and deep spindled regions (Figure 1, patient 2, A and B, respectively). S100 and
SOX10 were expressed diffusely in both regions, whereas pan-melanocytic cocktail, HMB-45 antigen,
and Melan-A were expressed only in the epithelioid region (Figure 1, patient 2, A1–A5 and B1–B5,
respectively). The same driver mutations of TP53 and CDKN2A were detected in both regions, whereas
STK11 mutation was detected only in the epithelioid region.

Cancers 2019, 11, x FOR PEER REVIEW  5 of 13 

 

2.2. Histopathologic, Immunohistochemical, and Molecular Characteristics by Patient 94 

In primary melanomas, the tumor of patient 1 had nevoid and spindled regions (Figure 1, patient 95 
1, A and B, respectively). S100 and SOX10 exhibited diffuse expression in both regions, whereas pan-96 
melanocytic cocktail exhibited diffuse expression in the nevoid region and focal expression in the 97 
spindled region. HMB-45 antigen and Melan-A were positive only in the nevoid region (Figure 1, 98 
patient 1, A1–A5 and B1–B5, respectively). NRAS, TP53, and KDR mutations were detected in both 99 
regions, whereas APC mutation was detected only in the nevoid region. The tumor of patient 2 had 100 
superficial epithelioid and deep spindled regions (Figure 1, patient 2, A and B, respectively). S100 101 
and SOX10 were expressed diffusely in both regions, whereas pan-melanocytic cocktail, HMB-45 102 
antigen, and Melan-A were expressed only in the epithelioid region (Figure 1, patient 2, A1–A5 and 103 
B1–B5, respectively). The same driver mutations of TP53 and CDKN2A were detected in both regions, 104 
whereas STK11 mutation was detected only in the epithelioid region. 105 

 106 
Figure 1. Histomorphologic and immunophenotypic of primary melanomas in patients 1 and 2. 107 
Patient 1: primary cutaneous melanoma with nevoid (A) and spindled (B) regions (H&E, ×400; insets, 108 
×20) exhibiting diffuse expression of S100 (A1), SOX10 (A2), pan-melanocytic cocktail (A3), HMB-45 109 
antigen (A4), and Melan-A (A5) in the nevoid region and diffuse expression of S100 (B1) and SOX10 110 
(B2), scattered focal expression of pan-melanocytic cocktail (B3), and negative expression of HMB-45 111 
antigen (B4) and MelanA (B5) in the spindled region (IHC, ×200). Patient 2: primary cutaneous 112 
melanoma with superficial epithelioid (A) and deep spindled (B) regions (H&E, ×400; insets, ×20) 113 
exhibiting diffuse expression of S100 (A1), SOX10 (A2), and pan-melanocytic cocktail (A3) and patchy 114 
expression of HMB-45 antigen (A4) and Melan-A (A5) in the epithelioid region and diffuse expression 115 
of S100 (B1) and SOX10 (B2) and negative expression of pan-melanocytic cocktail (B3), HMB-45 116 
antigen (B4), and Melan-A (B5) in the spindled region (IHC, ×200). H&E, hematoxylin and eosin; IHC, 117 
immunohistochemistry. 118 

In paired (primary and metastatic) melanomas, the primary tumor of patient 3 exhibited 119 
epithelioid morphology (Figure 2, patient 3, A) and was diffusely positive for S100, SOX10, pan-120 
melanocytic cocktail, HMB-45 antigen, and Melan-A (Figure 2, patient 3, A1–A5), whereas the 121 
metastatic lesion exhibited rhabdoid morphology (Figure 2, patient 3, B) with patchy expression of 122 
S100, SOX10, and pan-melanocytic cocktail, focal expression of HMB-45 antigen, and negative 123 
expression of Melan-A (Figure 2, patient 3, B1–B5). Molecular analysis revealed identical mutations 124 
of BRAF, TP53, and ATM in the primary and metastatic tumors, whereas RAC1 mutation was 125 
identified only in the metastatic lesion. 126 

In patient 4, the primary tumor exhibited epithelioid morphology, and the metastatic lesion 127 
exhibited foamy/balloon-like morphology (Figure 2, patient 4, A and B, respectively). S100, SOX10, 128 
pan-melanocytic cocktail, and Melan-A were diffusely expressed in both lesions, in addition to the 129 
positive expression of HMB-45 antigen in the primary lesion (Figure 2, patient 4, A1–A5 and B1–B3). 130 
NGS revealed mutation in HNFA1 that was detected only in the primary lesion, and a mutation in 131 

Figure 1. Histomorphologic and immunophenotypic of primary melanomas in patients 1 and 2.
Patient 1: primary cutaneous melanoma with nevoid (A) and spindled (B) regions (H&E, ×400;
insets, ×20) exhibiting diffuse expression of S100 (A1), SOX10 (A2), pan-melanocytic cocktail (A3),
HMB-45 antigen (A4), and Melan-A (A5) in the nevoid region and diffuse expression of S100 (B1)
and SOX10 (B2), scattered focal expression of pan-melanocytic cocktail (B3), and negative expression
of HMB-45 antigen (B4) and MelanA (B5) in the spindled region (IHC, ×200). Patient 2: primary
cutaneous melanoma with superficial epithelioid (A) and deep spindled (B) regions (H&E, ×400; insets,
×20) exhibiting diffuse expression of S100 (A1), SOX10 (A2), and pan-melanocytic cocktail (A3) and
patchy expression of HMB-45 antigen (A4) and Melan-A (A5) in the epithelioid region and diffuse
expression of S100 (B1) and SOX10 (B2) and negative expression of pan-melanocytic cocktail (B3),
HMB-45 antigen (B4), and Melan-A (B5) in the spindled region (IHC, ×200). H&E, hematoxylin and
eosin; IHC, immunohistochemistry.

In paired (primary and metastatic) melanomas, the primary tumor of patient 3 exhibited epithelioid
morphology (Figure 2, patient 3, A) and was diffusely positive for S100, SOX10, pan-melanocytic
cocktail, HMB-45 antigen, and Melan-A (Figure 2, patient 3, A1–A5), whereas the metastatic lesion
exhibited rhabdoid morphology (Figure 2, patient 3, B) with patchy expression of S100, SOX10,
and pan-melanocytic cocktail, focal expression of HMB-45 antigen, and negative expression of Melan-A
(Figure 2, patient 3, B1–B5). Molecular analysis revealed identical mutations of BRAF, TP53, and ATM in
the primary and metastatic tumors, whereas RAC1 mutation was identified only in the metastatic lesion.

In patient 4, the primary tumor exhibited epithelioid morphology, and the metastatic lesion
exhibited foamy/balloon-like morphology (Figure 2, patient 4, A and B, respectively). S100, SOX10,
pan-melanocytic cocktail, and Melan-A were diffusely expressed in both lesions, in addition to the
positive expression of HMB-45 antigen in the primary lesion (Figure 2, patient 4, A1–A5 and B1–B3).
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NGS revealed mutation in HNFA1 that was detected only in the primary lesion, and a mutation in APC
was detected only in the metastatic lesion. In addition, the primary and metastatic lesions harbored
identical KIT mutations.
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Figure 2. Morphologic and immunohistochemical expression of paired lesions in patient 3–5. Patient 3:
primary cutaneous melanoma with epithelioid morphology (A) and histiocytoid morphology of
intraparotid lymph node metastasis (B) (H&E, ×400; inset, ×20) exhibiting diffuse expression of
S100 (A1), SOX10 (A2), pan-melanocytic cocktail (A3), HMB-45 antigen (A4), and Melan-A (A5) in
the primary lesion and patchy expression of S100 (B1), SOX10 (B2), pan-melanocytic cocktail (B3),
focal expression of HMB-45 antigen (B4), and negative expression of Melan-A (B5) in the metastatic
lesion (IHC, ×200). Patient 4: primary cutaneous melanoma with epithelioid morphology (A) and right
groin lymph node with metastatic melanoma with histiocytoid morphology (H&E, ×400) exhibiting
diffuse expression of S100 (A1), SOX10 (A2), pan-melanocytic cocktail (A3), HMB-45 antigen (A4),
and Melan-A (A5) in the primary lesion and diffuse expression of S100 (B1), SOX10 (not shown),
pan-melanocytic cocktail (B2), and Melan-A (B3) in the metastatic lesion (IHC,×200). Patient 5: primary
cutaneous melanoma with epithelioid (A) and rhabdoid (B) morphologies and in-transit metastasis
with myxoid morphology (C) (H&E, ×400) exhibiting diffuse expression of S100 (AB1), SOX10 (AB2),
pan-melanocytic cocktail (AB3), HMB-45 antigen (AB4), and Melan-A (AB5) in the epithelioid region of
primary lesion, patchy expression of S100 (AB1), negative expression of SOX10 (AB2), pan-melanocytic
cocktail (AB3), and HMB-45 antigen (AB4), and focal expression of Melan-A (AB5) in the rhabdoid
region of the primary lesion, and focal expression of S100 (C1), patchy expression of SOX10 (C2),
negative expression of pan-melanocytic cocktail (C3) and HMB-45 antigen (C4), and weak expression
of Melan-A (C5) in the metastatic lesion (IHC, ×200).

In patient 5, the primary tumor exhibited a region with epithelioid morphology and a separate
region with rhabdoid morphology, whereas the metastatic lesion exhibited myxoid morphology
(Figure 2, patient 5, A–C, respectively). In the primary lesion, the epithelioid region exhibited diffuse
expression of S100, SOX10, pan-melanocytic cocktail, HMB-45 antigen, and Melan-A (Figure 2, patient
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5, AB1–AB5, left, respectively), and the rhabdoid region exhibited variable expression of S100 and
Melan-A (Figure 2, patient 5, AB1 and AB5, right, respectively) with negative expression of SOX10,
pan-melanocytic cocktail, and HMB-45 antigen (Figure 2, patient 5, AB2–AB4, right, respectively).
Whereas the metastatic lesion was positive for S100 (focal), SOX10 (patchy), and Melan-A (weak)
(Figure 2, patient 5, C1, C2, and C5, respectively) with a lack of pan-melanocytic cocktail and HMB-45
antigen (Figure 2, patient 5, C3 and C4, respectively). Identical mutations in NRAS and TP53 were
present in all three regions. A mutation in CTNNB1 was present only in the epithelioid region of the
primary tumor, and a mutation in STK11 was present only in the metastasis.

2.3. Distribution of the Detected Driver Mutations

The detected mutations are summarized in Figure 3. In the 11 histologically distinct regions
of eight tumors retrieved from five patients, mutations were detected in 12 cancer-associated genes.
Mutations in five of these genes (42%), namely, APC, STK11, RAC1, HNFA1, and CTNNB1, were detected
in only one of the histologically distinct regions within the same patient (non-overlapping). Mutations
in APC and STK11 were each non-overlapping in two patients (Table 2). Mutations in the other seven
cancer-associated genes (58%) were present in each histologically distinct region within the same patient
(overlapping). Of the detected genes, the most commonly mutated gene was TP53, the mutations of
which were detected in each histologically distinct region in four patients. Quantification of allele
frequency revealed that CTNNB1 (patient 5, epithelioid region of primary lesion) had the highest allele
frequency (32.97%) among the non-overlapping genes, whereas CDKN2A (patient 2, primary tumor,
epithelioid and spindled regions) had the highest allele frequency (83.09%) among the overlapping
genes. In each case in which a BRAF, NRAS, or KIT mutation was identified, the mutation was present
in all the histologically distinct regions. Alternatively, case 2 had no BRAF, NRAS, or KIT mutations.
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Figure 3. Next-generation sequencing of the histologically distinct regions revealed heterogeneous
distribution of the detected cancer-associated driver mutations. In each mutated gene, specific changes
detected at the nucleotide (CDS) and the peptide levels (AA), as well as sites of synonymous mutations,
are illustrated. Abbreviations: PRI, primary; MET, metastatic; N, nevoid; S, spindled; E, epithelioid;
H, histiocytoid; R, rhabdoid; M, myxoid; p, patchy; f, focal; na, not available.

3. Discussion

In this study, we analyzed mutation in 50 cancer-associated genes in melanomas exhibiting
intertumor and intratumor histophenotypic variation. Our results showed that, in each patient,
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at least one non-overlapping mutation was detected in only one of the morphologically distinct
regions, whereas one or more identical mutations were present in all of the morphologically distinct
regions. Our findings indicate that histomorphologically heterogenic melanomas are often molecularly
heterogenic, too. The latter may point toward a more aggressive disease and higher rates of treatment
failure. Alternatively, the detection of overlapping mutations demonstrated in our current study
may help pathologists accurately diagnose primary melanoma in cases with unusual histophenotypic
presentations which may lead to a misdiagnosis of dedifferentiated or collision tumor, and may be
useful in the diagnosis of histomorphologically heterogeneous metastases mimicking carcinoma or
unclassified sarcoma [12]. Also, loss or gain of genetic alterations present only in metastatic lesions
may reveal therapeutically actionable targets that can significantly impact the clinical management of
patients with melanoma refractory to conventional therapy [13–18].

Melanoma can exhibit a variety of morphologic patterns, including rhabdoid, lipoblastic,
cartilaginous, adenocarcinomatous, balloon cell, signet-ring cell, and small cell, which are often
associated with several immunophenotypic alterations. However, their molecular characteristics are
not well explored. The degree of the tumor molecular heterogeneity that is associated with its histologic
heterogeneity is still unknown. Tumor genetic heterogeneity can occur at the level of the epigenome,
genome, or transcriptome (proteome).

Although tumors originate from monoclonal cancer stem cells, as tumors evolve, tumor cells
adopt new mutations and give rise to new subclones, which result in both spatial and temporal
heterogeneity [19–22]. In melanoma, variable rates of mutations in cancer-related genes have been
detected, ranging from 0.1 mutations per Mb to 100.0 mutations per Mb [23]. In our present study,
we found that, in 80% of cases (n = 4) in which a BRAF, NRAS, or KIT mutation was identified,
the mutation was present in all histologically distinct regions. These findings support the idea that
the driver mutations are more conserved than passenger mutations in metastatic lesions. Most of the
mutations other than BRAF, NRAS, and KIT mutations that we detected in metastatic lesions seemed
to be associated with promotion of disease progression. These findings are similar to those of a prior
study by Harbst et al. [24], who examined eight melanomas for genetic heterogeneity and found that
12% of the detected cancer-associated mutations were heterogeneously distributed, whereas BRAF and
NRAS mutations, when detected, were homogeneously distributed among all the sampled regions.

In our current study, the quantification of mutant allele frequency (MAF) revealed that CDKN2A
(patient 2, primary tumor, epithelioid and spindled regions) had the highest allele frequency (f = 83.09),
suggesting loss of heterozygosity (LOH) of this gene. These findings are supportive of those of
several recent studies, leading to the conclusion that MAF is a result of tumor heterogeneity in
melanoma [25–28]. These studies examined the MAF of BRAF mutation in melanoma and revealed
that the rates ranged from 0% to 97%.

Our study demonstrates that, in cases of melanoma metastasis, there may be at least one new
mutation in the metastatic tumor in addition to the mutations detected in the primary melanoma.
Our findings are similar to previous findings of tumor heterogeneity at the genetic level, which can
alter the treatment response. Sakaizawa et al. [29] reported intertumor heterogeneity in BRAF mutation
in circulating melanoma cells. Similarly, Lin et al. studied the MAF of BRAF mutation in three paired
cases of primary and metastatic melanomas and found that two of the three cases had a higher MAF
of BRAF mutation in the metastatic site than in the matched primary tumor [30]. Prior studies have
also detected heterogeneity in members of signaling pathways in metastatic melanoma. Casula et
al. [31] observed CDKN2A mutation in 11 of 16 metastatic tumors but not in paired primary melanomas
whereas Goswami et al. [32] observed heterogeneity in KRAS and KIT mutations between paired cases
of primary and metastatic melanomas.

In melanoma, tumor genetic heterogeneity remains one of the most common reasons for resistance
to therapy [33], in which certain mutations may lead to resistance to targeted therapy. For instance,
in our current study, Rac1 P29S mutation was identified in the metastatic melanoma of patient 3,
which would carry a potential risk for resistance to Raf-therapy [34]. Similarly, variable response to
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immune checkpoint blockade was observed in cases with high tumor heterogeneity [35]. Additionally,
high tumor heterogeneity may result in multiple tumor subpopulations that harbor heterogeneous
mutations in cancer-related genes, which promote tumor survival and disease progression [36].

To detect tumor heterogeneity, although various methods can be used, NGS-based analysis is
considered one of the most helpful tools for detecting mutations that explain tumor heterogeneity due
to its high sensitivity that can detect mutations that occur in a small percentage of tumor cells [37].
In addition to being precise and accurate, NGS-based methods are relatively cost-effective compared to
other methods, such as real-time PCR and Sanger sequencing [38]. Although our analysis was limited
to the 50 genes interrogated by the NGS panel, a more extended panel or the use of whole-genome
sequencing may result in lower rates of heterogeneity or false homogeneity.

4. Materials and Methods

Formalin-fixed, paraffin-embedded tissue samples of melanomas exhibiting intertumor or
intratumor histologic heterogeneity were obtained from the archived materials of the Department of
Pathology at the University of Texas MD Anderson Cancer Center over a two-year period. Sample
collection and study protocols were approved by the MD Anderson Cancer Center Institutional Review
Board. Intratumor histologic heterogeneity was defined as tumor with more than one distinct histologic
pattern but maintaining well-formed boundaries, whereas intertumor histologic heterogeneity was
defined as paired samples of primary and metastatic melanomas with completely distinct and
non-overlapping mutually exclusive histologic patterns. A cutoff of 1.0 mm Breslow thinness and
1.0 mm in diameter of tumor deposit were used as criteria for sampling adequacy of primary and
metastatic melanomas, respectively. To limit the sampling error using laser capture microdissection
(LCM), melanomas exhibiting intermingled or overlapped histomorphologies in primary and metastatic
lesions were excluded. For unequivocal histologic and phenotypic interpretation, tumors with heavy
melanin pigmentation were also excluded from the study. After application of these selection
and exclusion criteria, primary tumors from 2 patients and paired primary and metastatic tumors
from 3 patients yielded 8 tumors and 11 histomorphologically distinct regions were identified.
Whenever feasible, the immunohistochemical profile of the retrieved cases was also obtained
to permit comparison of melanoma marker expression among the histologically distinct regions.
Additional immunohistochemical staining for melanocytic markers, including S100 protein, SOX10,
HMB-45 antigen, Melan-A, and pan-melanocytic cocktail, were performed in our Clinical Laboratory
Improvement Amendments (CLIA)-certified laboratory on all the samples with sufficient tissue
to complete the immunohistochemical whenever needed. Tissue blocks were sectioned at 5 µm
thickness, placed on uncharged slides, and stained with hematoxylin and eosin. After analysis of the
histomorphology, tumor tissue was laser microdissected for NGS analysis.

4.1. Laser Capture Microdissection and DNA Extraction

From each of the 11 histomorphologically distinct regions, an area in which the neoplastic
melanocytes compromise at least 90% of the cells, was obtained by LCM. Approximately 4 × 10 µm3 of
tissue per sample was captured after adjustment of the laser amplitude, pulse duration, and number
of hits. DNA was isolated by treating the tissue samples with 100 µL of 0.04% proteinase K at 42 ◦C
overnight followed by heat-denaturing at 95 ◦C for 10 min. The genomic DNA extracted from each
microdissected area was subjected to NGS-based analysis for the detection of somatic mutations in the
coding sequence of 50 genes.

4.2. Test Platform

Polymerase chain reaction (PCR)-based sequencing was performed in a CLIA-certified laboratory
using NGS platform on genomic DNA to screen for mutations in the coding sequences of the following
50 cancer-associated genes: ABL1, AKT1, ALK, APC, ATM, BRAF, CDH1, CDKN2A, CSF1R, CTNNB1,
EGFR, ERBB2, ERBB4, EZH2, FBXW7, FGFR1, FGFR2, FGFR3, FLT3, GNA11, GNAQ, GNAS, HNF1A,
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HRAS, IDH1, IDH2, JAK2, JAK3, KDR, KIT, KRAS, MET, MLH1, MPL, NOTCH1, NPM1, NRAS, PDGFRA,
PIK3CA, PTEN, PTPN11, RB1, RET, SMAD4, SMARCB1, SMO, SRC, STK11, TP53, and VHL. NGS was
performed using the Ampliseq Cancer Hotspot Panel version 2 in an Ion S5 system. Analysis was
performed using Torrent suite version 5.6 with GRCh37/hg19 as the reference genome. Adequately
covered amplicons were defined as those having total coverage depth of at least 250 reads.

We determined the effective lower limit of detection of this assay (analytical sensitivity) for single
nucleotide variations to be in the range of 5% (1 mutant allele in the background of 19 wild-type alleles)
to 10% (1 mutant allele in the background of 9 wild-type alleles) by taking into consideration the
depth of coverage at a given base and the ability to confirm low-level mutations using independent
conventional platforms. The NGS-based study was targeted to detect mutations in cancer-related
genes and genes related to signaling pathways that can affect tumor cell viability, promote disease
progression, and predict response to therapy.

5. Conclusions

Our present study confirmed that melanomas exhibiting morphologic heterogeneity are often
molecularly heterogeneous neoplasm. In each patient, one or more identical driver mutations were
present in each of the morphologically distinct regions, and at least one genomic alteration in a gene
not usually associated with melanoma was present in only one of the morphologically distinct regions.
These findings support performing comprehensive molecular profiling beyond the major mutations
of melanoma (BRAF, NRAS, and KIT) to detect rare cancer driver genes. Currently, NGS is the most
reliable and cost-effective method for evaluating tumor heterogeneity. Genetic heterogeneity may
reveal therapeutically actionable targets that can significantly impact the clinical management of
patients with melanoma refractory to conventional therapy.
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