120 research outputs found

    Changes in Clinical Context for Kaposi's Sarcoma and Non-Hodgkin Lymphoma Among People With HIV Infection in the United States

    Get PDF
    The biology of HIV-associated cancers may differ depending on immunologic and virologic context during development. Therefore, an understanding of the burden of Kaposi's sarcoma (KS) and non-Hodgkin lymphoma (NHL) relative to antiretroviral therapy (ART), virologic suppression, and CD4 count is important

    Nucleophosmin Phosphorylation by v-Cyclin-CDK6 Controls KSHV Latency

    Get PDF
    Nucleophosmin (NPM) is a multifunctional nuclear phosphoprotein and a histone chaperone implicated in chromatin organization and transcription control. Oncogenic Kaposi's sarcoma herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma, primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). In the infected host cell KSHV displays two modes of infection, the latency and productive viral replication phases, involving extensive viral DNA replication and gene expression. A sustained balance between latency and reactivation to the productive infection state is essential for viral persistence and KSHV pathogenesis. Our study demonstrates that the KSHV v-cyclin and cellular CDK6 kinase phosphorylate NPM on threonine 199 (Thr199) in de novo and naturally KSHV-infected cells and that NPM is phosphorylated to the same site in primary KS tumors. Furthermore, v-cyclin-mediated phosphorylation of NPM engages the interaction between NPM and the latency-associated nuclear antigen LANA, a KSHV-encoded repressor of viral lytic replication. Strikingly, depletion of NPM in PEL cells leads to viral reactivation, and production of new infectious virus particles. Moreover, the phosphorylation of NPM negatively correlates with the level of spontaneous viral reactivation in PEL cells. This work demonstrates that NPM is a critical regulator of KSHV latency via functional interactions with v-cyclin and LANA

    The prevalence and clinical characteristics of nonradiographic axial spondyloarthritis among patients with inflammatory back pain in rheumatology practices: a multinational, multicenter study

    Full text link
    BACKGROUND: Patients with ankylosing spondylitis (AS), who by definition have radiographic sacroiliitis, typically experience symptoms for a decade or more before being diagnosed. Yet, even patients without radiographic sacroiliitis (i.e., nonradiographic axial spondyloarthritis [nr-axSpA]) report a significant disease burden. The primary objective of this study was to estimate the prevalence and clinical characteristics of nr-axSpA among patients with inflammatory back pain (IBP) in rheumatology clinics in a number of countries across the world. A secondary objective was to estimate the prevalence of IBP among patients with chronic low back pain (CLBP). METHODS: Data were collected from 51 rheumatology outpatient clinics in 19 countries in Latin America, Africa, Europe, and Asia. As consecutive patients with CLBP (N = 2517) were seen by physicians at the sites, their clinical histories were evaluated to determine whether they met the new Assessment of SpondyloArthritis international Society criteria for IBP. For those who did, their available clinical history (e.g., family history, C-reactive protein [CRP] levels) was documented in a case report form to establish whether they met criteria for nr-axSpA, AS, or other IBP. Patients diagnosed with nr-axSpA or AS completed patient-reported outcome measures to assess disease activity and functional limitations. RESULTS: A total of 2517 patients with CLBP were identified across all sites. Of these, 974 (38.70 %) fulfilled the criteria for IBP. Among IBP patients, 29.10 % met criteria for nr-axSpA, and 53.72 % met criteria for AS. The prevalence of nr-axSpA varied significantly by region (p < 0.05), with the highest prevalence reported in Asia (36.46 %) and the lowest reported in Africa (16.02 %). Patients with nr-axSpA reported mean ± SD Ankylosing Spondylitis Disease Activity Scores based on erythrocyte sedimentation rate and CRP of 2.62 ± 1.17 and 2.52 ± 1.21, respectively, indicating high levels of disease activity (patients with AS reported corresponding scores of 2.97 ± 1.13 and 2.93 ± 1.18). Similarly, the overall Bath Ankylosing Spondylitis Disease Activity Index score of 4.03 ± 2.23 for patients with nr-axSpA (4.56 ± 2.17 for patients with AS) suggested suboptimal disease control. CONCLUSIONS: These results suggest that, in the centers that participated in the study, 29 % of patients with IBP met the criteria for nr-axSpA and 39 % of patients with CLBP had IBP. The disease burden in nr-axSpA is substantial and similar to that of AS, with both groups of patients experiencing inadequate disease control. These findings suggest the need for early detection of nr-axSpA and initiation of available treatment options to slow disease progression and improve patient well-being

    Kaposi's Sarcoma-Associated Herpesvirus-Encoded LANA Down-Regulates IL-22R1 Expression through a Cis-Acting Element within the Promoter Region

    Get PDF
    Kaposi's sarcoma-associated herpesvirus (KSHV) is considered to be a necessary, but not sufficient, causal agent of Kaposi's sarcoma (KS). All forms of KS are characterized by the proliferation of spindle-shaped cells, and most (>90%) spindle cells from KS lesions are latently infected with KSHV. During KSHV latency, only a few viral genes are expressed. Among those latent genes, the ORF 73 gene encodes the latency-associated nuclear antigen (LANA), which is critical for the establishment and maintenance of the latent KSHV infection. Much evidence suggests that many cytokines can increase the frequency and aggressiveness of KS. In this study, a microarray analysis of KS and normal tissues revealed that multiple cytokines and cytokine receptors are regulated by KSHV latent infection. Of special interest, IL-22R1 transcript level was found to be down-regulated in the KS tissue. To study the possible regulation of IL-22R1 by LANA, the IL-22R1 promoter was constructed and found to contain a LANA-binding site (LBS). LANA was demonstrated to down-regulate IL-22R1 expression via direct binding to the LBS located within the IL-22R1 promoter region. Furthermore, KSHV latently infected cells showed an impaired response to IL-22 stimulation. These results suggest that LANA can regulate host factor expression by directly binding to a cis-acting element within the factor's promoter to benefit latent viral infection and suppression of the antiviral immune response

    CHOP Potentially Co-Operates with FOXO3a in Neuronal Cells to Regulate PUMA and BIM Expression in Response to ER Stress

    Get PDF
    Endoplasmic reticulum (ER) stress-induced apoptosis has been implicated in various neurodegenerative diseases including Parkinson Disease, Alzheimer Disease and Huntington Disease. PUMA (p53 upregulated modulator of apoptosis) and BIM (BCL2 interacting mediator of cell death), pro-apoptotic BH3 domain-only, BCL2 family members, have previously been shown to regulate ER stress-induced cell death, but the upstream signaling pathways that regulate this response in neuronal cells are incompletely defined. Consistent with previous studies, we show that both PUMA and BIM are induced in response to ER stress in neuronal cells and that transcriptional induction of PUMA regulates ER stress-induced cell death, independent of p53. CHOP (C/EBP homologous protein also known as GADD153; gene name Ddit3), a critical initiator of ER stress-induced apoptosis, was found to regulate both PUMA and BIM expression in response to ER stress. We further show that CHOP knockdown prevents perturbations in the AKT (protein kinase B)/FOXO3a (forkhead box, class O, 3a) pathway in response to ER stress. CHOP co-immunoprecipitated with FOXO3a in tunicamycin treated cells, suggesting that CHOP may also regulate other pro-apoptotic signaling cascades culminating in PUMA and BIM activation and cell death. In summary, CHOP regulates the expression of multiple pro-apoptotic BH3-only molecules through multiple mechanisms, making CHOP an important therapeutic target relevant to a number of neurodegenerative conditions

    Malignant Catarrhal Fever Induced by Alcelaphine herpesvirus 1 Is Associated with Proliferation of CD8+ T Cells Supporting a Latent Infection

    Get PDF
    Alcelaphine herpesvirus 1 (AlHV-1), carried by wildebeest asymptomatically, causes malignant catarrhal fever (WD-MCF) when cross-species transmitted to a variety of susceptible species of the Artiodactyla order. Experimentally, WD-MCF can be induced in rabbits. The lesions observed are very similar to those described in natural host species. Here, we used the rabbit model and in vivo 5-Bromo-2′-Deoxyuridine (BrdU) incorporation to study WD-MCF pathogenesis. The results obtained can be summarized as follows. (i) AlHV-1 infection induces CD8+ T cell proliferation detectable as early as 15 days post-inoculation. (ii) While the viral load in peripheral blood mononuclear cells remains below the detection level during most of the incubation period, it increases drastically few days before death. At that time, at least 10% of CD8+ cells carry the viral genome; while CD11b+, IgM+ and CD4+ cells do not. (iii) RT-PCR analyses of mononuclear cells isolated from the spleen and the popliteal lymph node of infected rabbits revealed no expression of ORF25 and ORF9, low or no expression of ORF50, and high or no expression of ORF73. Based on these data, we propose a new model for the pathogenesis of WD-MCF. This model relies on proliferation of infected CD8+ cells supporting a predominantly latent infection

    The Epigenetic Landscape of Latent Kaposi Sarcoma-Associated Herpesvirus Genomes

    Get PDF
    Herpesvirus latency is generally thought to be governed by epigenetic modifications, but the dynamics of viral chromatin at early timepoints of latent infection are poorly understood. Here, we report a comprehensive spatial and temporal analysis of DNA methylation and histone modifications during latent infection with Kaposi Sarcoma-associated herpesvirus (KSHV), the etiologic agent of Kaposi Sarcoma and primary effusion lymphoma (PEL). By use of high resolution tiling microarrays in conjunction with immunoprecipitation of methylated DNA (MeDIP) or modified histones (chromatin IP, ChIP), our study revealed highly distinct landscapes of epigenetic modifications associated with latent KSHV infection in several tumor-derived cell lines as well as de novo infected endothelial cells. We find that KSHV genomes are subject to profound methylation at CpG dinucleotides, leading to the establishment of characteristic global DNA methylation patterns. However, such patterns evolve slowly and thus are unlikely to control early latency. In contrast, we observed that latency-specific histone modification patterns were rapidly established upon a de novo infection. Our analysis furthermore demonstrates that such patterns are not characterized by the absence of activating histone modifications, as H3K9/K14-ac and H3K4-me3 marks were prominently detected at several loci, including the promoter of the lytic cycle transactivator Rta. While these regions were furthermore largely devoid of the constitutive heterochromatin marker H3K9-me3, we observed rapid and widespread deposition of H3K27-me3 across latent KSHV genomes, a bivalent modification which is able to repress transcription in spite of the simultaneous presence of activating marks. Our findings suggest that the modification patterns identified here induce a poised state of repression during viral latency, which can be rapidly reversed once the lytic cycle is induced

    KSHV Reactivation from Latency Requires Pim-1 and Pim-3 Kinases to Inactivate the Latency-Associated Nuclear Antigen LANA

    Get PDF
    Host signal-transduction pathways are intimately involved in the switch between latency and productive infection of herpes viruses. As with other herpes viruses, infection by Kaposi's sarcoma herpesvirus (KSHV) displays these two phases. During latency only few viral genes are expressed, while in the productive infection the virus is reactivated with initiation of extensive viral DNA replication and gene expression, resulting in production of new viral particles. Viral reactivation is crucial for KSHV pathogenesis and contributes to the progression of KS. We have recently identified Pim-1 as a kinase reactivating KSHV upon over-expression. Here we show that another Pim family kinase, Pim-3, also induces viral reactivation. We demonstrate that expression of both Pim-1 and Pim-3 is induced in response to physiological and chemical reactivation in naturally KSHV-infected cells, and we show that they are required for KSHV reactivation under these conditions. Furthermore, our data indicate that Pim-1 and Pim-3 contribute to viral reactivation by phosphorylating the KSHV latency-associated nuclear antigen (LANA) on serine residues 205 and 206. This counteracts the LANA–mediated repression of the KSHV lytic gene transcription. The identification of Pim family kinases as novel cellular regulators of the gammaherpesvirus life cycle facilitates a deeper understanding of virus–host interactions during reactivation and may represent potential novel targets for therapeutic intervention
    corecore