4 research outputs found

    A new seipin-associated neurodegenerative syndrome

    Get PDF
    Background: Seipin/BSCL2 mutations can cause type 2 congenital generalised lipodystrophy (BSCL) or dominant motor neurone diseases. Type 2 BSCL is frequently associated with some degree of intellectual impairment, but not to fatal neurodegeneration. In order to unveil the aetiology and pathogenetic mechanisms of a new neurodegenerative syndrome associated with a novel BSCL2 mutation, six children, four of them showing the BSCL features, were studied. Methods: Mutational and splicing analyses of BSCL2 were performed. The brain of two of these children was examined postmortem. Relative expression of BSCL2 transcripts was analysed by real-time reverse transcription-polymerase chain reaction (RT-PCR) in different tissues of the index case and controls. Overexpressed mutated seipin in HeLa cells was analysed by immunofluorescence and western blotting. Results: Two patients carried a novel homozygous c.985C>T mutation, which appeared in the other four patients in compound heterozygosity. Splicing analysis showed that the c.985C>T mutation causes an aberrant splicing site leading to skipping of exon 7. Expression of exon 7-skipping transcripts was very high with respect to that of the non-skipped transcripts in all the analysed tissues of the index case. Neuropathological studies showed severe neurone loss, astrogliosis and intranuclear ubiquitin(+) aggregates in neurones from multiple cortical regions and in the caudate nucleus. Conclusions: Our results suggest that exon 7 skipping in the BSCL2 gene due to the c.985C>T mutation is responsible for a novel early onset, fatal neurodegenerative syndrome involving cerebral cortex and basal ganglia.Instituto de Salud Carlos III (grant number PI 10/02873) and European Regional Development Fund, FEDER (grant number 10PXIB208013PR) and Consellería de Industria, Xunta de Galicia.S

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    Clinical Heterogeneity and Different Phenotypes in Patients with <i>SETD2</i> Variants: 18 New Patients and Review of the Literature

    No full text
    SETD2 belongs to the family of histone methyltransferase proteins and has been associated with three nosologically distinct entities with different clinical and molecular features: Luscan–Lumish syndrome (LLS), intellectual developmental disorder, autosomal dominant 70 (MRD70), and Rabin–Pappas syndrome (RAPAS). LLS [MIM #616831] is an overgrowth disorder with multisystem involvement including intellectual disability, speech delay, autism spectrum disorder (ASD), macrocephaly, tall stature, and motor delay. RAPAS [MIM #6201551] is a recently reported multisystemic disorder characterized by severely impaired global and intellectual development, hypotonia, feeding difficulties with failure to thrive, microcephaly, and dysmorphic facial features. Other neurologic findings may include seizures, hearing loss, ophthalmologic defects, and brain imaging abnormalities. There is variable involvement of other organ systems, including skeletal, genitourinary, cardiac, and potentially endocrine. Three patients who carried the missense variant p.Arg1740Gln in SETD2 were reported with a moderately impaired intellectual disability, speech difficulties, and behavioral abnormalities. More variable findings included hypotonia and dysmorphic features. Due to the differences with the two previous phenotypes, this association was then named intellectual developmental disorder, autosomal dominant 70 [MIM 620157]. These three disorders seem to be allelic and are caused either by loss-of-function, gain-of-function, or missense variants in the SETD2 gene. Here we describe 18 new patients with variants in SETD2, most of them with the LLS phenotype, and reviewed 33 additional patients with variants in SETD2 that have been previously reported in the scientific literature. This article offers an expansion of the number of reported individuals with LLS and highlights the clinical features and the similarities and differences among the three phenotypes associated with SETD2
    corecore