461 research outputs found
Shot Noise of Spin-Decohering Transport in Spin-Orbit Coupled Nanostructures
We generalize the scattering theory of quantum shot noise to include the full
spin-density matrix of electrons injected from a spin-filtering or
ferromagnetic electrode into a quantum-coherent nanostructure governed by
various spin-dependent interactions. This formalism yields the spin-resolved
shot noise power for different experimental measurement setups--with
ferromagnetic source and ferromagnetic or normal drain electrodes--whose
evaluation for the diffusive multichannel quantum wires with the Rashba (SO)
spin-orbit coupling shows how spin decoherence and dephasing lead to
substantial enhancement of charge current fluctuations (characterized by Fano
factors ). However, these processes and the corresponding shot noise
increase are suppressed in narrow wires, so that charge transport experiments
measuring the Fano factor in a
ferromagnet/SO-coupled-wire/paramagnet setup also quantify the degree of
phase-coherence of transported spin--we predict a one-to-one correspondence
between the magnitude of the spin polarization vector and .Comment: 8 pages, 3 figure; enhanced with 2 new figure
Classical and Quantum Fluctuation Theorems for Heat Exchange
The statistics of heat exchange between two classical or quantum finite
systems initially prepared at different temperatures are shown to obey a
fluctuation theorem.Comment: 4 pages, 1 included figure, to appear in Phys Rev Let
Moment distributiuons of clusters and molecules in the adiabatic rotor model
We present a Fortran program to compute the distribution of dipole moments of
free particles for use in analyzing molecular beams experiments that measure
moments by deflection in an inhomogeneous field. The theory is the same for
magnetic and electric dipole moments, and is based on a thermal ensemble of
classical particles that are free to rotate and that have moment vectors
aligned along a principal axis of rotation. The theory has two parameters, the
ratio of the magnetic (or electric) dipole energy to the thermal energy, and
the ratio of moments of inertia of the rotor.Comment: 3 pages with 2 figure
Spin and charge pumping in magnetic tunnel junctions with precessing magnetization: A nonequilibrium Green function approach
We study spin and charge currents pumped by precessing magnetization of a
single ferromagnetic layer within F|I|N or F|I|F (F-ferromagnet; I-insulator;
N-normal-metal) multilayers of nanoscale thickness attached to two normal metal
electrodes with no applied bias voltage between them. Both simple
one-dimensional model, consisting of a single precessing spin and a potential
barrier as the "sample," and realistic three-dimensional devices are
investigated. In the rotating reference frame, where the magnetization appears
to be static, these junctions are mapped onto a four-terminal dc circuit whose
effectively half-metallic ferromagnetic electrodes are biased by the frequency
of microwave radiation driving magnetization precession at the
ferromagnetic resonance (FMR) conditions. We show that pumped spin current in
F|I|F junctions, diminished behind the tunnel barrier and increased in the
opposite direction, is filtered into charge current by the second layer to
generate dc pumping voltage of the order of V (at FMR frequency
GHz) in an open circuit. In F|I|N devices, several orders of
magnitude smaller charge current and the corresponding dc voltage appear
concomitantly with the pumped spin current due to barrier induced asymmetry in
the transmission coefficients connecting the four electrodes in the rotating
frame picture of pumping.Comment: 8 pages, 5 figure
Quantum erasure within the Optical Stern-Gerlach Model
In the optical Stern-Gerlach effect the two branches in which the incoming
atomic packet splits up can display interference pattern outside the cavity
when a field measurement is made which erases the which-way information on the
quantum paths the system can follow. On the contrary, the mere possibility to
acquire this information causes a decoherence effect which cancels out the
interference pattern. A phase space analysis is also carried out to investigate
on the negativity of the Wigner function and on the connection between its
covariance matrix and the distinguishability of the quantum paths.Comment: 7 pages, 3 figure
Unstable particles as open quantum systems
We present the probability preserving description of the decaying particle
within the framework of quantum mechanics of open systems taking into account
the superselection rule prohibiting the superposition of the particle and
vacuum. In our approach the evolution of the system is given by a family of
completely positive trace preserving maps forming one-parameter dynamical
semigroup. We give the Kraus representation for the general evolution of such
systems which allows one to write the evolution for systems with two or more
particles. Moreover, we show that the decay of the particle can be regarded as
a Markov process by finding explicitly the master equation in the Lindblad
form. We also show that there are remarkable restrictions on the possible
strength of decoherence.Comment: 11 pp, 2 figs (published version
Destruction of states in quantum mechanics
A description of destruction of states on the grounds of quantum mechanics
rather than quantum field theory is proposed. Several kinds of maps called
supertraces are defined and used to describe the destruction procedure. The
introduced algorithm can be treated as a supplement to the von Neumann-Lueders
measurement. The discussed formalism may be helpful in a description of EPR
type experiments and in quantum information theory.Comment: 14 pp, 1 eps figure, LaTeX2e using iopart class. Final version, will
be published in J. Phys. A: Math. Ge
Massive Parallel Quantum Computer Simulator
We describe portable software to simulate universal quantum computers on
massive parallel computers. We illustrate the use of the simulation software by
running various quantum algorithms on different computer architectures, such as
a IBM BlueGene/L, a IBM Regatta p690+, a Hitachi SR11000/J1, a Cray X1E, a SGI
Altix 3700 and clusters of PCs running Windows XP. We study the performance of
the software by simulating quantum computers containing up to 36 qubits, using
up to 4096 processors and up to 1 TB of memory. Our results demonstrate that
the simulator exhibits nearly ideal scaling as a function of the number of
processors and suggest that the simulation software described in this paper may
also serve as benchmark for testing high-end parallel computers.Comment: To appear in Comp. Phys. Com
Entropy production and equilibration in Yang-Mills quantum mechanics
The Husimi distribution provides for a coarse grained representation of the
phase space distribution of a quantum system, which may be used to track the
growth of entropy of the system. We present a general and systematic method of
solving the Husimi equation of motion for an isolated quantum system, and we
construct a coarse grained Hamiltonian whose expectation value is exactly
conserved. As an application, we numerically solve the Husimi equation of
motion for two-dimensional Yang-Mills quantum mechanics (the x-y model) and
calculate the time evolution of the coarse grained entropy of a highly excited
state. We show that the coarse grained entropy saturates to a value that
coincides with the microcanonical entropy corresponding to the energy of the
system.Comment: 23 pages, 23 figure
Optimal Monitoring of Position in Nonlinear Quantum Systems
We discuss a model of repeated measurements of position in a quantum system
which is monitored for a finite amount of time with a finite instrumental
error. In this framework we recover the optimum monitoring of a harmonic
oscillator proposed in the case of an instantaneous collapse of the
wavefunction into an infinite-accuracy measurement result. We also establish
numerically the existence of an optimal measurement strategy in the case of a
nonlinear system. This optimal strategy is completely defined by the spectral
properties of the nonlinear system.Comment: 4 pages, REVTeX 3.0, 4 PostScript figure
- …