11 research outputs found

    ERK1 and ERK2 are involved in recruitment and maturation of human mesenchymal stem cells induced to adipogenic differentiation

    Get PDF
    Adipocytes' biology and the mechanisms that control adipogenesis have gained importance because of the need to develop therapeutic strategies to control obesity and the related pathologies. Human mesenchymal stem cells (hMSCs), undifferentiated stem cells present in the bone marrow that are physiological precursors of adipocytes, were induced to adipogenic differentiation. The molecular mechanisms on the basis of the adipogenesis were evaluated, focusing on the MAPKinases ERK1 and ERK2, which are involved in many biological and cellular processes. ERK1 and ERK2 phosphorylation was reduced with different timing and intensity for the two isoforms in treated hMSCs in comparison with control cells until day 10 and then at 14-28 days, it reached the level of untreated cultures. The total amount of ERK1 was also decreased up to day 10 and then was induced to the level of untreated cultures, whereas the expression of ERK2 was not changed following adipogenic induction. Treatment with the specific ERK1/2 inhibitor U0126 during the whole differentiation period hampered hMSCs' adipogenic differentiation, as lipid droplets appeared in very few cells and were reduced in number and size. When U0126 was administered only during the initial phase of differentiation, the number of hMSCs recruited to adipogenesis was reduced while, when it was administered later, hMSCs did not acquire a mature adipocytic phenotype. ERK1 and ERK2 are important for hMSC adipogenic differentiation since any alteration to the correct timing of their phosphorylation affects either the recruitment into the differentiation program and the extent of their maturation

    Effects induced by particles derived from two anthropogenic sources on respiratory, cardiovascular and central nervous systems

    Get PDF
    Air pollution represents a well-known environmental problem related to public health. Particulate matter (PM) is a heterogeneous mixture of chemicals, metals and soils. Its adverse effects have been correlated with particles size, being smaller particles more likely to cause a worst damage, so their study deserves more attention. Ultrafine particles (UFPs, dae < 100 nm) are short-lived particles dispersed in the environment. In Lombardy, diesel combustion and solid biomass burning are the most relevant contributors to primary UFPs emissions (15-30 nm in diameter). Toxicological studies, mainly in vitro, indicate specific effects for particles of different origin but comparative in vivo studies are scarce. PM exposure has been primarily associated to pulmonary and cardiovascular diseases through oxidative stress and inflammatory response, but recently it has been postulated that PM exposure could also be an important risk factor for neurotoxicity and could have a role in neurodegenerative diseases. In this study we analysed in BALB/c mice the effect of single and repeated intratracheal instillation of diesel (DEP) and biomass (BC) particles on respiratory, cardiovascular and central nervous systems, comparing the two different UFPs sources. The study was performed at biochemical and histopathological level. Different pro-inflammatory, cytotoxic, pro-coagulant and oxidative stress markers were measured. For the histopathological evaluation, sections of lung, heart and different parts of the central nervous system (CNS) were examined at light microscope, using standard staining tecniques and immunohistochemical methods. Inflammation was also monitored in living mice following BC or DEP intratracheal repeated administration using the FMT 1500 fluorescence tomography imaging system and the MMPSense 750 Fast probe.  Our results indicate that even a single instillation of both the sources of UFPs induces a wide range of biochemical changes in the respiratory and cardiovascular systems, then confirmed by repeated instillation. In the CNS similar modifications were observed, although these were much more evident after repeated instillations. Histological examination demonstrated the presence of macrophages containing particles in the lungs after UFPs single and, more abundantly, repeated administration. However, significant changes were not observed in sections of heart and CNS. DEP was more effective in inducing oxidative stress and inflammation compared to BC

    Positive effect of Mesenchymal Stem Cells therapeutic administration on chronic Experimental Autoimmune Encephalomyelitis

    Get PDF
    Multiple Sclerosis (MS) is a crippling chronic disease of the Central Nervous System caused by the presence of self-antibodies which progressively damage axonal myelin sheath, leading to axonal transmission impairment and to the development of neurological symptoms. MS is characterized by a Relapsing-Remitting course, and current therapies rely only on the use of immunosuppressive drugs, which are however unable to reverse disease progression. Encouraging results have been obtained in preclinical studies with the administration of Mesenchymal Stem Cells (MSCs) before disease onset (Zappia et al., 2005). Here, we investigate the therapeutic potential of MSC administration after disease onset into an animal model of MS, represented by Dark Agouti rats affected by chronic Relapsing-Remitting Experimental Autoimmune Encephalomyelitis (EAE) (Cavaletti et al., 2004). 106 MSC were intravenously injected in EAE rats after disease onset. Clinical score was assessed daily, and after 45 days rats were sacrificed and histological analysis of spinal cords performed to evaluate the demyelinating lesions. After the first peak of disease, no further relapses were observed in EAE rats treated with MSCs, differently from what observed in EAE group. Histological analysis demonstrated the presence of demyelinated plaques in spinal cords of EAE rats, (Luxol fast Blue staining and anti-MBP immunohystochemistry). On the contrary the therapeutic schedule with MSCs significantly reduces the number and the extension of demyelinated areas in the spinal cords, confirming clinical score evaluations. These results demonstrated that MSCs ameliorate the clinical course of EAE and hamper the disease relapsing by reducing the areas of demyelinated lesions. Granted by MIUR – FIRB Futuro in Ricerca 2008 Prot. N° RBFR08VSVI_001

    Making Connections: Mesenchymal Stem Cells Manifold Ways to Interact with Neurons

    No full text
    Mesenchymal Stem Cells (MSCs) are adult multipotent cells able to increase sensory neuron survival: direct co-culture of MSCs with neurons is pivotal to observe a neuronal survival increase. Despite the identification of some mechanisms of action, little is known about how MSCs physically interact with neurons. The aim of this paper was to investigate and characterize the main mechanisms of interaction between MSCs and neurons. Morphological analysis showed the presence of gap junctions and tunneling nanotubes between MSCs and neurons only in direct co-cultures. Using a diffusible dye, we observed a flow from MSCs to neurons and further analysis demonstrated that MSCs donated mitochondria to neurons. Treatment of co-cultures with the gap junction blocker Carbenoxolone decreased neuronal survival, thus demonstrating the importance of gap junctions and, more in general, of cell communication for the MSC positive effect. We also investigated the role of extracellular vesicles; administration of direct co-cultures-derived vesicles was able to increase neuronal survival. In conclusion, our study demonstrates the presence and the importance of multiple routes of communication between MSCs and neurons. Such knowledge will allow a better understanding of the potential of MSCs and how to maximize their positive effect, with the final aim to provide the best protective treatment

    Candida albicans Expresses a Focal Adhesion Kinase-Like Protein That Undergoes Increased Tyrosine Phosphorylation upon Yeast Cell Adhesion to Vitronectin and the EA.hy 926 Human Endothelial Cell Line

    No full text
    The signaling pathways triggered by adherence of Candida albicans to the host cells or extracellular matrix are poorly understood. We provide here evidence in C. albicans yeasts of a p105 focal adhesion kinase (Fak)-like protein (that we termed CaFak), antigenically related to the vertebrate p125Fak, and its involvement in integrin-like-mediated fungus adhesion to vitronectin (VN) and EA.hy 926 human endothelial cell line. Biochemical analysis with different anti-chicken Fak antibodies identified CaFak as a 105-kDa protein and immunofluorescence and cytofluorimetric analysis on permeabilized cells specifically stain C. albicans yeasts; moreover, confocal microscopy evidences CaFak as a cytosolic protein that colocalizes on the membrane with the integrin-like VN receptors upon yeast adhesion to VN. The protein tyrosine kinase (PTK) inhibitors genistein and herbimycin A strongly inhibited C. albicans yeast adhesion to VN and EA.hy 926 endothelial cells. Moreover, engagement of αvβ3 and αvβ5 integrin-like on C. albicans either by specific monoclonal antibodies or upon adhesion to VN or EA.hy 926 endothelial cells stimulates CaFak tyrosine phosphorylation that is blocked by PTK inhibitor. A role for CaFak in C. albicans yeast adhesion was also supported by the failure of VN to stimulate its tyrosine phosphorylation in a C. albicans mutant showing normal levels of CaFak and VNR-like integrins but displaying reduced adhesiveness to VN and EA.hy 926 endothelial cells. Our results suggest that C. albicans Fak-like protein is involved in the control of yeast cell adhesion to VN and endothelial cells

    Systemic Exposure to Air Pollution Induces Oxidative Stress and Inflammation in Mouse Brain, Contributing to Neurodegeneration Onset

    No full text
    In northern Italy, biomass burning-derived (BB) particles and diesel exhaust particles (DEP) are considered the most significant contributors to ultrafine particle (UFP) emission. However, a comparison between their impact on different brain regions was not investigated until now. Therefore, male BALB/c mice were treated with a single or three consecutive intratracheal instillations using 50 &micro;g of UFPs in 100 &micro;L of isotonic saline solution or 100 &micro;L of isotonic saline solution alone, and brains were collected and analyzed. Proteins related to oxidative stress and inflammation, as well as Alzheimer&rsquo;s disease markers, were examined in the hippocampus, cerebellum, and the rest of the brain (RoB). Histopathological examination of the brain was also performed. Moreover, correlations among different brain, pulmonary, and cardiovascular markers were performed, allowing us to identify the potentially most stressful UFP source. Although both acute exposures induced inflammatory pathways in mouse brain, only DEP showed strong oxidative stress. The sub-acute exposure also induced the modulation of APP and BACE1 protein levels for both UFPs. We observed that DEP exposure is more harmful than BB, and this different response could be explained by this UFP&rsquo;s different chemical composition and reactivity
    corecore