2,297 research outputs found

    Monolithically integrated active optical devices

    Get PDF
    Considerations relevant to the monolithic integration of optical detectors, lasers, and modulators with high speed amplifiers are discussed. Some design considerations for representative subsystems in the GaAs-AlGaAs and GaInAs-InP materials systems are described. Results of a detailed numerical design of an electro-optical birefringent filter for monolithic integration with a laser diode is described, and early experimental results on monolithic integration of broadband MESFET amplifiers with photoconductive detectors are reported

    On the Dynamics of Suddenly Heated Accretion Disks around Neutron Stars

    Full text link
    Type I X-ray bursts and superbursts on neutron stars release sudden and intense radiation fields into their surroundings. Here, we consider the possible effects of these powerful explosions on the structure of the accretion disk. The goal is to account for the apparent evolution of the innermost regions of the accretion disk around 4U 1820-30 during a superburst. Three different processes are considered in detail: radiatively or thermally driven outflows, inflow due to Poynting-Robertson drag, and a structural change to the disk by X-ray heating. Radiatively driven winds with large column densities can be launched from the inner disk, but only for L/L_{Edd} >~ 1, which is expected to be obtained only at the onset of the burst. Furthermore, the predicted mass outflow rate is less than the accretion rate in 4U 1820-30. Estimates of the Poynting-Robertson or radiative drag timescale shows that it is a very efficient means of removing angular momentum from the gas. However, the analytical results are likely only applicable at the innermost edge of the disk. X-ray heating gives a change in the disk scale height that is correlated with the blackbody temperature, as seen in the evolution during the 4U 1820-30 superburst. If this change in the scale height can alter the surface density, then the viscous time (with \alpha ~ 0.03-0.2) is the closest match to the 4U 1820-30 results. We expect, however, that all three processes are likely ongoing when an accretion disk is subject to a sudden heating event. Ultimately, a numerical simulation of a disk around a bursting neutron star is required to determine the exact response of the disk. Magnetic truncation of the accretion flow is also considered and applied to the 4U 1820-30 X-ray reflection results.Comment: 14 pages, 6 figures, accepted by Ap

    Lifting the Veil on Obscured Accretion: Active Galactic Nuclei Number Counts and Survey Strategies for Imaging Hard X-Ray Missions

    Get PDF
    Finding and characterizing the population of active galactic nuclei (AGNs) that produces the X-ray background (XRB) is necessary to connect the history of accretion to observations of galaxy evolution at longer wavelengths. The year 2012 will see the deployment of the first hard X-ray imaging telescope which, through deep extragalactic surveys, will be able to measure the AGN population at the energies where the XRB peaks (~20-30 keV). Here, we present predictions of AGN number counts in three hard X-ray bandpasses: 6-10 keV, 10-30 keV, and 30-60 keV. Separate predictions are presented for the number counts of Compton thick AGNs, the most heavily obscured active galaxies. The number counts are calculated for five different models of the XRB that differ in the assumed hard X-ray luminosity function, the evolution of the Compton thick AGNs, and the underlying AGN spectral model. The majority of the hard X-ray number counts will be Compton thin AGNs, but there is a greater than tenfold increase in the Compton thick number counts from the 6-10 keV to the 10-30 keV band. The Compton thick population shows enough variation that a hard X-ray number counts measurement will constrain the models. The computed number counts are used to consider various survey strategies for the NuSTAR mission, assuming a total exposure time of 6.2 Ms. We find that multiple surveys will allow a measurement of Compton thick evolution. The predictions presented here should be useful for all future imaging hard X-ray missions

    An XMM-Newton observation of Ton S180: Constraints on the continuum emission in ultrasoft Seyfert galaxies

    Full text link
    We present an XMM-Newton observation of the bright, narrow-line, ultrasoft Seyfert 1 galaxy Ton S180. The 0.3-10 keV X-ray spectrum is steep and curved, showing a steep slope above 2.5 keV (Gamma ~ 2.3) and a smooth, featureless excess of emission at lower energies. The spectrum can be adequately parameterised using a simple double power-law model. The source is strongly variable over the course of the observation but shows only weak spectral variability, with the fractional variability amplitude remaining approximately constant over more than a decade in energy. The curved continuum shape and weak spectral variability are discussed in terms of various physical models for the soft X-ray excess emission, including reflection off the surface of an ionised accretion disc, inverse-Compton scattering of soft disc photons by thermal electrons, and Comptonisation by electrons with a hybrid thermal/non-thermal distribution. We emphasise the possibility that the strong soft excess may be produced by dissipation of accretion energy in the hot, upper atmosphere of the putative accretion disc.Comment: 9 pages, accepted for publication in MNRA

    Impact of neutron star spin on Poynting-Robertson drag during a Type I X-ray burst

    Full text link
    External irradiation of a neutron star (NS) accretion disc induces Poynting-Robertson (PR) drag, removing angular momentum and increasing the mass accretion rate. Recent simulations show PR drag significantly enhancing the mass accretion rate during Type I X-ray bursts, which could explain X-ray spectral features such as an increase in the persistent emission and a soft excess. However, prograde spin of the NS is expected to weaken PR drag, challenging its importance during bursts. Here, we study the effect of spin on PR drag during X-ray bursts. We run four simulations, with two assuming a non-spinning NS and two using a spin parameter of a=0.2a_*=0.2, corresponding to a rotation frequency of 500 Hz. For each scenario, we simulate the disc evolution subject to an X-ray burst and compare it to the evolution found with no burst. PR drag drains the inner disc region during a burst, moving the inner disc radius outward by 1.6\approx1.6 km in the a=0a_*=0 and by 2.2\approx2.2 km in the a=0.2a_*=0.2 simulation. The burst enhances the mass accretion rate across the innermost stable circular orbit 7.9\approx7.9 times when the NS is not spinning and 11.2\approx11.2 times when it is spinning. The explanation for this seemingly contradictory result is that the disc is closer to the NS when a=0.2a_*=0.2, and the resulting stronger irradiating flux offsets the weakening effect of spin on the PR drag. Hence, PR drag remains a viable explanation for the increased persistent emission and soft excess observed during X-ray bursts in spinning NS systems.Comment: 9 pages, 8 figures, accepted for publication in MNRA

    Liver-specific knockout of arginase-1 leads to a profound phenotype similar to inducible whole body arginase-1 deficiency

    Get PDF
    Arginase-1 (Arg1) converts arginine to urea and ornithine in the distal step of the urea cycle in liver. We previously generated a tamoxifen-inducible Arg1 deficient mouse model (Arg1-Cre) that disrupts Arg1 expression throughout the whole body and leads to lethality ≈ 2 weeks after gene disruption. Here, we evaluate if liver-selective Arg1 loss is sufficient to recapitulate the phenotype observed in global Arg1 knockout mice, as well as to gauge the effectiveness of gene delivery or hepatocyte transplantation to rescue the phenotype. Liver-selective Arg1 deletion was induced by using an adeno-associated viral (AAV)-thyroxine binding globulin (TBG) promoter-Cre recombinase vector administered to Arg1 "floxed" mice; Arg1(fl/fl) ). An AAV vector expressing an Arg1-enhanced green fluorescent protein (Arg1-eGFP) transgene was used for gene delivery, while intrasplenic injection of wild-type (WT) C57BL/6 hepatocytes after partial hepatectomy was used for cell delivery to "rescue" tamoxifen-treated Arg1-Cre mice. The results indicate that liver-selective loss of Arg1 (> 90% deficient) leads to a phenotype resembling the whole body knockout of Arg1 with lethality ≈ 3 weeks after Cre-induced gene disruption. Delivery of Arg1-eGFP AAV rescues more than half of Arg1 global knockout male mice (survival > 4 months) but a significant proportion still succumb to the enzyme deficiency even though liver expression and enzyme activity of the fusion protein reach levels observed in WT animals. Significant Arg1 enzyme activity from engrafted WT hepatocytes into knockout livers can be achieved but not sufficient for rescuing the lethal phenotype. This raises a conundrum relating to liver-specific expression of Arg1. On the one hand, loss of expression in this organ appears to be both necessary and sufficient to explain the lethal phenotype of the genetic disorder in mice. On the other hand, gene and cell-directed therapies suggest that rescue of extra-hepatic Arg1 expression may also be necessary for disease correction. Further studies are needed in order to illuminate the detailed mechanisms for pathogenesis of Arg1-deficiency

    A Correlation Between the Ionization State of the Inner Accretion Disk and the Eddington Ratio of Active Galactic Nuclei

    Full text link
    X-ray reflection features observed from the innermost regions of accretion disks in Active Galactic Nuclei (AGNs) allow important tests of accretion theory. In recent years it has been possible to use the Fe K line and reflection continuum to parametrize the ionization state of the irradiated inner accretion disk. Here, we collect 10 measurements of xi, the disk ionization parameter, from 8 AGNs with strong evidence for reflection from the inner accretion disk and good black hole mass estimates. We find strong statistical evidence (98.56% confidence) for a nearly linear correlation between xi and the AGN Eddington ratio. Moreover, such a correlation is predicted by a simple application of alpha-disk accretion theory, albeit with a stronger dependence on the Eddington ratio. The theory shows that there will be intrinsic scatter to any correlation as a result of different black hole spins and radii of reflection. There are several possibilities to soften the predicted dependence on the Eddington ratio to allow a closer agreement with the observed correlation, but the current data does not allow for an unique explanation. The correlation can be used to estimate that MCG-6-30-15 should have a highly ionized inner accretion disk, which would imply a black hole spin of ~0.8. Additional measurements of xi from a larger sample of AGNs are needed to confirm the existence of this correlation, and will allow investigation of the accretion disk/corona interaction in the inner regions of accretion disks.Comment: 21 pages, 2 figures, accepted by Ap

    Obscuring Active Galactic Nuclei with Nuclear Starburst Disks

    Full text link
    We assess the potential of nuclear starburst disks to obscure the Seyfert-like AGN that dominate the hard X-ray background at z~1. Over 1200 starburst disk models, based on the theory developed by Thompson et al., are calculated for five input parameters: the black hole mass, the radial size of the starburst disk, the dust-to-gas ratio, the efficiency of angular momentum transport in the disk, and the gas fraction at the outer disk radius. We find that a large dust-to-gas ratio, a relatively small starburst disk, a significant gas mass fraction, and efficient angular momentum transport are all important to produce a starburst disk that can potentially obscure an AGN. The typical maximum star-formation rate in the disks is ~10 solar masses per year. Assuming no mass-loss due to outflows, the starburst disks feed gas onto the black hole at rates sufficient to produce hard X-ray luminosities of 10^{43}-10^{44} erg s^{-1}. The starburst disks themselves should be detectable at mid-infrared and radio wavelengths; at z=0.8, the predicted fluxes are ~1 mJy at 24microns and ~10-30 microJy at 1.4GHz. Thus, we predict a large fraction of radio/X-ray matches in future deep radio surveys. The starburst disks should be easily distinguished from AGN in future 100microns surveys by Herschel with expected fluxes of ~5 mJy. Any AGN-obscuring starbursts will be associated with hot dust, independent of AGN heating, resulting in observable signatures for separating galactic and nuclear star-formation. Finally, because of the competition between gas and star-formation, nuclear starbursts will be associated with lower-luminosity AGN. Thus, this phenomenon is a natural explanation for the observed decrease in the fraction of obscured AGN with luminosity.Comment: 13 pages, 12 figures, 3 in color; accepted by Ap
    corecore