25,077 research outputs found

    A comparison of SNPs and microsatellites as linkage mapping markers: lessons from the zebra finch (Taeniopygia guttata)

    Get PDF
    Background: Genetic linkage maps are essential tools when searching for quantitative trait loci (QTL). To maximize genome coverage and provide an evenly spaced marker distribution a combination of different types of genetic marker are sometimes used. In this study we created linkage maps of four zebra finch (Taeniopygia guttata) chromosomes (1, 1A, 2 and 9) using two types of marker, Single Nucleotide Polymorphisms (SNPs) and microsatellites. To assess the effectiveness and accuracy of each kind of marker we compared maps built with each marker type separately and with both types of marker combined. Linkage map marker order was validated by making comparisons to the assembled zebra finch genome sequence. Results: We showed that marker order was less reliable and linkage map lengths were inflated for microsatellite maps relative to SNP maps, apparently due to differing error rates between the two types of marker. Guidelines on how to minimise the effects of error are provided. In particular, we show that when combining both types of marker the conventional process of building linkage maps, whereby the most informative markers are added to the map first, has to be modified in order to improve map accuracy. Conclusions: When using multiple types and large numbers of markers to create dense linkage maps, the least error prone loci (SNPs) rather than the most informative should be used to create framework maps before the addition of other potentially more error prone markers (microsatellites). This raises questions about the accuracy of marker order and predicted recombination rates in previous microsatellite linkage maps which were created using the conventional building process, however, provided suitable error detection strategies are followed microsatellite-based maps can continue to be regarded as reasonably reliable

    Computing earnings per share: unofficial accounting interpretations of APB Opinion no. 15

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/1625/thumbnail.jp

    The social geography of childcare: 'making up' the middle class child

    Get PDF
    Childcare is a condensate of disparate social forces and social processes. It is gendered and classed. It is subject to an excess of policy and political discourse. It is increasingly a focus for commercial exploitation. This is a paper reporting on work in progress in an ESRC funded research project (R000239232) on the choice and provision of pre-school childcare by middle class (service class) families in two contrasting London locations. Drawing on recent work in class analysis the paper examines the relationships between childcare choice, middle class fractions and locality. It suggests that on the evidence of the findings to date, there is some evidence of systematic differences between fractions in terms of values, perspectives and preferences for childcare, but a more powerful case for intra-class similarities, particularly when it comes to putting preferences into practice in the 'making up of a middle class child' through care and education

    The effect of noise correlations on randomized benchmarking

    Get PDF
    Among the most popular and well studied quantum characterization, verification and validation techniques is randomized benchmarking (RB), an important statistical tool used to characterize the performance of physical logic operations useful in quantum information processing. In this work we provide a detailed mathematical treatment of the effect of temporal noise correlations on the outcomes of RB protocols. We provide a fully analytic framework capturing the accumulation of error in RB expressed in terms of a three-dimensional random walk in "Pauli space." Using this framework we derive the probability density function describing RB outcomes (averaged over noise) for both Markovian and correlated errors, which we show is generally described by a gamma distribution with shape and scale parameters depending on the correlation structure. Long temporal correlations impart large nonvanishing variance and skew in the distribution towards high-fidelity outcomes -- consistent with existing experimental data -- highlighting potential finite-sampling pitfalls and the divergence of the mean RB outcome from worst-case errors in the presence of noise correlations. We use the Filter-transfer function formalism to reveal the underlying reason for these differences in terms of effective coherent averaging of correlated errors in certain random sequences. We conclude by commenting on the impact of these calculations on the utility of single-metric approaches to quantum characterization, verification, and validation.Comment: Updated and expanded to include full derivation. Related papers available from http://www.physics.usyd.edu.au/~mbiercuk/Publications.htm

    Assessing the relationship between spectral solar irradiance and stratospheric ozone using Bayesian inference

    Full text link
    We investigate the relationship between spectral solar irradiance (SSI) and ozone in the tropical upper stratosphere. We find that solar cycle (SC) changes in ozone can be well approximated by considering the ozone response to SSI changes in a small number individual wavelength bands between 176 and 310 nm, operating independently of each other. Additionally, we find that the ozone varies approximately linearly with changes in the SSI. Using these facts, we present a Bayesian formalism for inferring SC SSI changes and uncertainties from measured SC ozone profiles. Bayesian inference is a powerful, mathematically self-consistent method of considering both the uncertainties of the data and additional external information to provide the best estimate of parameters being estimated. Using this method, we show that, given measurement uncertainties in both ozone and SSI datasets, it is not currently possible to distinguish between observed or modelled SSI datasets using available estimates of ozone change profiles, although this might be possible by the inclusion of other external constraints. Our methodology has the potential, using wider datasets, to provide better understanding of both variations in SSI and the atmospheric response.Comment: 21 pages, 4 figures, Journal of Space Weather and Space Climate (accepted), pdf version is in draft mode of Space Weather and Space Climat

    Computed microtomography visualization and quantification of mouse ischemic brain lesion by nonionic radio contrast agents.

    Get PDF
    AIM: To explore the possibility of brain imaging by microcomputed tomography (microCT) using x-ray contrasting methods to visualize mouse brain ischemic lesions after middle cerebral artery occlusion (MCAO). ----- METHODS: Isolated brains were immersed in ionic or nonionic radio contrast agent (RCA) for 5 days and subsequently scanned using microCT scanner. To verify whether ex-vivo microCT brain images can be used to characterize ischemic lesions, they were compared to Nissl stained serial histological sections of the same brains. To verify if brains immersed in RCA may be used afterwards for other methods, subsequent immunofluorescent labeling with anti-NeuN was performed. ----- RESULTS: Nonionic RCA showed better gray to white matter contrast in the brain, and therefore was selected for further studies. MicroCT measurement of ischemic lesion size and cerebral edema significantly correlated with the values determined by Nissl staining (ischemic lesion size: P=0.0005; cerebral edema: P=0.0002). Brain immersion in nonionic RCA did not affect subsequent immunofluorescent analysis and NeuN immunoreactivity. ----- CONCLUSION: MicroCT method was proven to be suitable for delineation of the ischemic lesion from the non-infarcted tissue, and quantification of lesion volume and cerebral edema

    Heavy-to-light transition form factors and their relations in light-cone QCD sum rules

    Full text link
    The improved light-cone QCD sum rules by using chiral current correlator is systematically reviewed and applied to the calculation of all the heavy-to-light form factors, including all the semileptonic and penguin ones. By choosing suitable chiral currents, the light-cone sum rules for all the form factors are greatly simplified and depend mainly on one leading twist distribution amplitude of the light meson. As a result, relations between these form factors arise naturally. At the considered accuracy these relations reproduce the results obtained in the literature. Moreover, since the explicit dependence on the leading twist distribution amplitudes is preserved, these relations may be more useful to simulate the experimental data and extract the information on the distribution amplitude.Comment: 1+16 pages, no figure
    corecore