24,614 research outputs found

    The high-energy gamma-ray light curve of PSR B1259 -63

    Get PDF
    The high-energy gamma-ray light curve of the binary system PSR B1259 -63, is computed using the approach that successfully predicted the spectrum at periastron. The simultaneous INTEGRAL and H.E.S.S. spectra taken 16 days after periastron currently permit both a model with dominant radiative losses, high pulsar wind Lorentz factor and modest efficiency as well as one with dominant adiabatic losses, a slower wind and higher efficiency. In this paper we shown how the long-term light curve may help to lift this degeneracy.Comment: 4 pages, to appear in proceedings of: Astrophysical Sources of High Energy Particles and Radiation, Torun (2005

    Exhaust Fan Temperature Switch

    Full text link
    The 13000 cfm 'emergency' vent fan must be protected from over cooling which would result in a mechanical failure. Over cooling could result from a catastrophic cryogen release from the cryostat(s) or Argon Storage Dewar. In order to protect the fan, a VPT has been calibrated for -31 C to open a switch which sends a signal to allow warm gas to enter the sump by means of a motor controlled louver installed at 'sidewalk level' in the ductwork between the assembly hall and the Argon Dewar Enclosure. The bulb of the VPT is enclosed in a thermal well and will be placed in the gas stream directly above the fan. The switching unit will be mounted nearby on the wall in order to isolate it from vibrational effects. Should the fan be activated due to a cryogen release, it should not experience any problems when operating above -40 C. The switch was set and checked in a saturated calcium chloride solution cooled to -31 C by running cold gaseous Nitrogen through a copper tube coiled in a dewar. Switching temperature was measured by a thermocouple tied to the VPT bulb. The thermocouple was checked in LN2, in an ice water bath, and against an ordinary thermometer (which was assumed to be accurate to plus or minus 0.3 C) at room temperature. The results are shown below in 'Table 1' By interpolation of the data, thermocouple error at -31.0 C was found to be 0.43 C on the warm side. Since this error was small, it was ignored. 'Table 2' shows the results of the tests. Ten readings were taken with the switch wired in the 'normally open' mode. This results in a signal at room temperature. The worst deviation was 2.5 C. Three readings were then taken from the 'normally closed' wiring arrangement (the way it will be wired for installation). The greatest deviation was 1.2 C. The next day, the switch was checked five times wired in the 'normally open' configuration. The greatest error was 1.1 C. A graph has been prepared showing the switching and resetting temperatures. The errors these tests bore out do not threaten the exhaust fan and are therefore acceptable

    Equivalence of robust stabilization and robust performance via feedback

    Full text link
    One approach to robust control for linear plants with structured uncertainty as well as for linear parameter-varying (LPV) plants (where the controller has on-line access to the varying plant parameters) is through linear-fractional-transformation (LFT) models. Control issues to be addressed by controller design in this formalism include robust stability and robust performance. Here robust performance is defined as the achievement of a uniform specified L2L^{2}-gain tolerance for a disturbance-to-error map combined with robust stability. By setting the disturbance and error channels equal to zero, it is clear that any criterion for robust performance also produces a criterion for robust stability. Counter-intuitively, as a consequence of the so-called Main Loop Theorem, application of a result on robust stability to a feedback configuration with an artificial full-block uncertainty operator added in feedback connection between the error and disturbance signals produces a result on robust performance. The main result here is that this performance-to-stabilization reduction principle must be handled with care for the case of dynamic feedback compensation: casual application of this principle leads to the solution of a physically uninteresting problem, where the controller is assumed to have access to the states in the artificially-added feedback loop. Application of the principle using a known more refined dynamic-control robust stability criterion, where the user is allowed to specify controller partial-state dimensions, leads to correct robust-performance results. These latter results involve rank conditions in addition to Linear Matrix Inequality (LMI) conditions.Comment: 20 page

    Incompatible sets of gradients and metastability

    Full text link
    We give a mathematical analysis of a concept of metastability induced by incompatibility. The physical setting is a single parent phase, just about to undergo transformation to a product phase of lower energy density. Under certain conditions of incompatibility of the energy wells of this energy density, we show that the parent phase is metastable in a strong sense, namely it is a local minimizer of the free energy in an L1L^1 neighbourhood of its deformation. The reason behind this result is that, due to the incompatibility of the energy wells, a small nucleus of the product phase is necessarily accompanied by a stressed transition layer whose energetic cost exceeds the energy lowering capacity of the nucleus. We define and characterize incompatible sets of matrices, in terms of which the transition layer estimate at the heart of the proof of metastability is expressed. Finally we discuss connections with experiment and place this concept of metastability in the wider context of recent theoretical and experimental research on metastability and hysteresis.Comment: Archive for Rational Mechanics and Analysis, to appea

    Is it really possible to grow isotropic on-lattice diffusion-limited aggregates?

    Full text link
    In a recent paper (Bogoyavlenskiy V A 2002 \JPA \textbf{35} 2533), an algorithm aiming to generate isotropic clusters of the on-lattice diffusion-limited aggregation (DLA) model was proposed. The procedure consists of aggregation probabilities proportional to the squared number of occupied sites (k2k^2). In the present work, we analyzed this algorithm using the noise reduced version of the DLA model and large scale simulations. In the noiseless limit, instead of isotropic patterns, a 45∘45^\circ (30∘30^\circ) rotation in the anisotropy directions of the clusters grown on square (triangular) lattices was observed. A generalized algorithm, in which the aggregation probability is proportional to kνk^\nu, was proposed. The exponent ν\nu has a nonuniversal critical value νc\nu_c, for which the patterns generated in the noiseless limit exhibit the original (axial) anisotropy for ν<νc\nu<\nu_c and the rotated one (diagonal) for ν>νc\nu>\nu_c. The values νc=1.395±0.005\nu_c = 1.395\pm0.005 and νc=0.82±0.01\nu_c = 0.82\pm 0.01 were found for square and triangular lattices, respectively. Moreover, large scale simulations show that there are a nontrivial relation between noise reduction and anisotropy direction. The case ν=2\nu=2 (\bogo's rule) is an example where the patterns exhibit the axial anisotropy for small and the diagonal one for large noise reduction.Comment: 12 pages, 8 figure

    A study of intense magnetic fields for high energy forming and structural assembly Interim report

    Get PDF
    Determination of maximum force on static sheet of aluminum subjected to magnetic field of hammer coi

    Cross Section Ratios between different CM energies at the LHC: opportunities for precision measurements and BSM sensitivity

    Get PDF
    The staged increase of the LHC beam energy provides a new class of interesting observables, namely ratios and double ratios of cross sections of various hard processes. The large degree of correlation of theoretical systematics in the cross section calculations at different energies leads to highly precise predictions for such ratios. We present in this letter few examples of such ratios, and discuss their possible implications, both in terms of opportunities for precision measurements and in terms of sensitivity to Beyond the Standard Model dynamics.Comment: 19 pages, 9 figure
    • …
    corecore