42,199 research outputs found

    Mathematical models of martensitic microstructure

    Get PDF
    Martensitic microstructures are studied using variational models based on nonlinear elasticity. Some relevant mathematical tools from nonlinear analysis are described, and applications given to austenite-martensite interfaces and related topics

    B->gamma e nu Transitions from QCD Sum Rules

    Full text link
    B->gamma e nu transitions have recently been studied in the framework of QCD factorization. The attractiveness of this channel for such an analysis lies in the fact that, at least in the heavy quark limit, the only hadron involved is the B meson itself, so one expects a very simple description of the form factor in terms of a convolution of the B meson distribution amplitude with a perturbative kernel. This description, however, does not include contributions suppressed by powers of the b quark mass. In this letter, we calculate corrections to the factorized expression which are induced by the ``soft'' hadronic component of the photon. We demonstrate that the power-suppression of these terms is numerically not effective for physical values of the bb quark mass and that they increase the form factor by about 30% at zero momentum transfer. We also derive a sum rule for lambda_B, the first negative moment of the B meson distribution amplitude, and find lambda_B = 0.6 GeV (to leading order in QCD).Comment: 13 pages, 5 figure

    A method for putting chiral fermions on the lattice

    Full text link
    We describe a method to put chiral gauge theories on the lattice. Our method makes heavy use of the effective action for chiral fermions in the continuum, which is in general complex. As an example we discuss the chiral Schwinger model.Comment: 4 pages, HLRZ 92-8

    Ben Bernanke and the Zero Bound

    Get PDF
    From 2000 to 2003, when Ben Bernanke was a professor and then a Fed Governor, he wrote extensively about monetary policy at the zero bound on interest rates. He advocated aggressive stimulus policies, such as a money-financed tax cut and an inflation target of 3-4%. Yet, since U.S. interest rates hit zero in 2008, the Fed under Chairman Bernanke has taken more cautious actions. This paper asks when and why Bernanke changed his mind about zero-bound policy. The answer, at one level, is that he was influenced by analysis from the Fed staff that was presented at the FOMC meeting of June 2003. This answer raises another question: why did the staff's views influence Bernanke so strongly? I seek answers to this question in the social psychology literature on group decision-making.

    Monetary Policy Rules

    Get PDF

    Partial regularity and smooth topology-preserving approximations of rough domains

    Get PDF
    For a bounded domain ΩRm,m2,\Omega\subset\mathbb{R}^m, m\geq 2, of class C0C^0, the properties are studied of fields of `good directions', that is the directions with respect to which Ω\partial\Omega can be locally represented as the graph of a continuous function. For any such domain there is a canonical smooth field of good directions defined in a suitable neighbourhood of Ω\partial\Omega, in terms of which a corresponding flow can be defined. Using this flow it is shown that Ω\Omega can be approximated from the inside and the outside by diffeomorphic domains of class CC^\infty. Whether or not the image of a general continuous field of good directions (pseudonormals) defined on Ω\partial\Omega is the whole of Sm1\mathbb{S}^{m-1} is shown to depend on the topology of Ω\Omega. These considerations are used to prove that if m=2,3m=2,3, or if Ω\Omega has nonzero Euler characteristic, there is a point PΩP\in\partial\Omega in the neighbourhood of which Ω\partial\Omega is Lipschitz. The results provide new information even for more regular domains, with Lipschitz or smooth boundaries.Comment: Final version appeared in Calc. Var PDE 56, Issue 1, 201

    Quasistatic nonlinear viscoelasticity and gradient flows

    Full text link
    We consider the equation of motion for one-dimensional nonlinear viscoelasticity of strain-rate type under the assumption that the stored-energy function is λ\lambda-convex, which allows for solid phase transformations. We formulate this problem as a gradient flow, leading to existence and uniqueness of solutions. By approximating general initial data by those in which the deformation gradient takes only finitely many values, we show that under suitable hypotheses on the stored-energy function the deformation gradient is instantaneously bounded and bounded away from zero. Finally, we discuss the open problem of showing that every solution converges to an equilibrium state as time tt \to \infty and prove convergence to equilibrium under a nondegeneracy condition. We show that this condition is satisfied in particular for any real analytic cubic-like stress-strain function.Comment: 40 pages, 1 figur
    corecore