32 research outputs found

    Nitrogen Contribution of Peanut Residue to Cotton in a Conservation Tillage System

    Get PDF
    Leguminous crops, particularly winter annuals, have been utilized in conservation systems to partially meet nitrogen (N) requirements of succeeding summer cash crops. Previous research also highlights the benefits of utilizing summer annual legumes in rotation with non-leguminous crops. This study assessed the N contribution of peanut (Arachis hypogaea L.) residues to a subsequent cotton (Gossypium hirsitum L.) crop in a conservation system on a Dothan sandy loam (fine-loamy, kaolinitic, thermic Plinthic Kandiudults) at Headland, AL during the 2003–2005 growing seasons. Treatments were arranged in a split plot design, with main plots of peanut residue retained or removed from the soil surface, and subplots as N application rates (0, 34, 67, and 101 kg ha−1) applied in fall and spring. Peanut residue did not influence seed cotton yields, leaf N concentrations, or plant N uptake for either growth stage or year of the experiment. There was a trend for peanut residue to increase whole plant biomass measured at the first square in two of three years. Seed cotton yields and plant parameters measured at the first square and mid-bloom responded favorably to spring N applications, but the recommended 101 kg N ha−1 did not maximize yields. The results from this study indicate that peanut residue does not contribute significant amounts of N to a succeeding cotton crop, however, retaining residue on the soil surface provides other benefits to soils in the southeastern U.S

    Cover Crop Biomass Harvest Influences Cotton Nitrogen Utilization and Productivity

    Get PDF
    There is a potential in the southeastern US to harvest winter cover crops from cotton (Gossypium hirsutum L.) fields for biofuels or animal feed use, but this could impact yields and nitrogen (N) fertilizer response. An experiment was established to examine rye (Secale cereale L.) residue management (RM) and N rates on cotton productivity. Three RM treatments (no winter cover crop (NC), residue removed (REM) and residue retained (RET)) and four N rates for cotton were studied. Cotton population, leaf and plant N concentration, cotton biomass and N uptake at first square, and cotton biomass production between first square and cutout were higher for RET, followed by REM and NC. However, leaf N concentration at early bloom and N concentration in the cotton biomass between first square and cutout were higher for NC, followed by REM and RET. Seed cotton yield response to N interacted with year and RM, but yields were greater with RET followed by REM both years. These results indicate that a rye cover crop can be beneficial for cotton, especially during hot and dry years. Long-term studies would be required to completely understand the effect of rye residue harvest on cotton production under conservation tillage

    A Constraint-Aware Motion Planning Algorithm for Robotic Folding of Clothes

    No full text
    Abstract Motion planning for robotic manipulation of clothing is a challenging problem as clothing articles have high-dimensional configuration spaces and are computationally expensive to simulate. We present an algorithm for robotic cloth folding that, given a sequence of desired folds, outputs a motion plan consisting of a sequence of primitives for a robot to fold the cloth. Previous work on cloth folding does not take into account the constraints of the robot, and thus produces plans which are often infeasible given the kinematics of robots like the Willow Garage PR2. In this paper we introduce a class of motion primitives that start and end in a subset of the cloth’s state space. To find a sequence of primitives that achieves all required folds, the algorithm takes advantage of the partial ordering inherent in folding, and produces a time-optimal motion plan (given the set of primitives) for the robot if one exists. We describe experiments with a general purpose mobile robotic platform, the PR2, folding articles that require dragging and base motion in addition to folding. Our experiments show that (1) many articles of clothing conform well enough to the assumptions made in our model and (2) this approach allows our robot to perform a wide variety of folds on articles of various sizes and shapes.
    corecore