471 research outputs found

    The anatomy of the Gunn laser

    Get PDF
    A monopolar GaAs Fabry–Pérot cavity laser based on the Gunn effect is studied both experimentally and theoretically. The light emission occurs via the band-to-band recombination of impact-ionized excess carriers in the propagating space-charge (Gunn) domains. Electroluminescence spectrum from the cleaved end-facet emission of devices with Ga1−xAlxAs (x = 0.32) waveguides shows clearly a preferential mode at a wavelength around 840 nm at T = 95 K. The threshold laser gain is assessed by using an impact ionization coefficient resulting from excess carriers inside the high-field domain

    Energy and momentum relaxation dynamics of hot holes in modulation doped GaInNAs/GaAs quantum wells

    Get PDF
    We present the studies of energy and momentum relaxation dynamics of nonequilibrium holes in GaxIn1−xNyAs1−y/GaAs quantum well modulation doped with Be. Experimental results show that the real-space transfer (RST) of hot holes occurs via thermionic emission from the high-mobility GaInNAs quantum wells into the low-mobility GaAs barriers at a threshold electric field of F ∼ 6 kV/cm at T = 13 K. At this field the hole drift velocity saturates at vd ∼ 1×107 cm/s. A slight increase in the field above the threshold leads to the impact ionization of acceptors in the barriers by the nonequilibrium holes. We observe and model theoretically a negative differential mobility effect induced by RST that occurs at an electric field of F ∼ 7 kV/cm. The observed current surge at electric fields above 7 kV/cm is attributed to the hole multiplication induced by shallow impurity breakdown in the GaAs barrier and impact ionization in the high-field domain regime associated with the packet of RST of holes in the well

    Superconductivity in heavily compensated Mg-doped InN

    Get PDF
    We report superconductivity in Mg-doped InN grown by molecular beam epitaxy. Superconductivity phase transition temperature occurs Tc = 3.97 K as determined by magnetoresistance and Hall resistance measurements. The two-dimensional (2D) carrier density of the measured sample is n2D = 9×1014 cm−2 corresponding to a three-dimensional (3D) electron density of n3D = 1.8×1019 cm−3 which is within the range of values between Mott transition and the superconductivity to metal transition. We propose a plausible mechanism to explain the existence of the superconductivity in terms of a uniform distribution of superconducting InN nanoparticles or nanosized indium dots forming microscopic Josephson junctions in the heavily compensated insulating bulk InN matrix

    GaInNAs-based Hellish-vertical cavity semiconductor optical amplifier for 1.3 μm operation

    Get PDF
    Hot electron light emission and lasing in semiconductor heterostructure (Hellish) devices are surface emitters the operation of which is based on the longitudinal injection of electrons and holes in the active region. These devices can be designed to be used as vertical cavity surface emitting laser or, as in this study, as a vertical cavity semiconductor optical amplifier (VCSOA). This study investigates the prospects for a Hellish VCSOA based on GaInNAs/GaAs material for operation in the 1.3-μm wavelength range. Hellish VCSOAs have increased functionality, and use undoped distributed Bragg reflectors; and this coupled with direct injection into the active region is expected to yield improvements in the gain and bandwidth. The design of the Hellish VCSOA is based on the transfer matrix method and the optical field distribution within the structure, where the determination of the position of quantum wells is crucial. A full assessment of Hellish VCSOAs has been performed in a device with eleven layers of Ga0.35In0.65N0.02As0.08/GaAs quantum wells (QWs) in the active region. It was characterised through I-V, L-V and by spectral photoluminescence, electroluminescence and electro-photoluminescence as a function of temperature and applied bias. Cavity resonance and gain peak curves have been calculated at different temperatures. Good agreement between experimental and theoretical results has been obtained

    Adherence to the combination of sulphadoxine-pyrimethamine and artesunate in the Maheba refugee settlement, Zambia.

    Get PDF
    Artemisinin-based combination therapy (ACT) is one strategy recommended to increase cure rates in malaria and to contain resistance to Plasmodium falciparum. In the Maheba refugee settlement, children aged 5 years or younger with a confirmed diagnosis of uncomplicated falciparum malaria are treated with the combination of sulphadoxine-pyrimethamine (1 day) and artesunate (3 days). To measure treatment adherence, home visits were carried out the day after the last treatment dose. Patients who had any treatment dose left were considered certainly non-adherent. Other patients' classification was based on the answers to the questionnaire: patients whose caretakers stated the child had received the treatment regimen exactly as prescribed were considered probably adherent; all other patients were considered probably non-adherent. Reasons for non-adherence were assessed. We found 21.2% (95% CI [15.0-28.4]) of the patients to be certainly non-adherent, 39.4% (95% CI [31.6-47.6]) probably non-adherent, and 39.4% (95% CI [31.6-47.6]) probably adherent. Insufficient explanation by the dispenser was identified as an important reason for non-adherence. When considering the use of ACT, the issue of patient adherence remains challenging. However, it should not be used as an argument against the introduction of ACT. For these treatment regimens to remain efficacious on a long-term basis, specific and locally adapted strategies need to be implemented to ensure completion of the treatment

    Gain studies of 1.3-μm dilute nitride HELLISH-VCSOA for optical communications

    Get PDF
    The hot electron light emitting and lasing in semiconductor heterostructure-vertical-cavity semiconductor optical amplifier (HELLISH-VCSOA) device is based on Ga0.35In0.65 N0.02As0.08/GaAs material for operation in the 1.3-μm window of the optical communications. The device has undoped distributed Bragg reflectors (DBRs). Therefore, problems such as those associated with refractive index contrast and current injection, which are common with doped DBRs in conventional VCSOAs, are avoided. The gain versus applied electric field curves are measured at different wavelengths using a tunable laser as the source signal. The highest gain is obtained for the 1.3-μm wavelength when an electric field in excess of 2 kV/cm is applied along the layers of the device

    High carrier concentration induced effects on the bowing parameter and the temperature dependence of the band gap of Ga<sub>x</sub>In<sub>1−x</sub>N

    Get PDF
    The influence of intrinsic carrier concentration on the compositional and temperature dependence of the bandgap of GaxIn1-xN is investigated in nominally undoped samples with Ga fractions of x = 0.019, 0.062, 0.324, 0.52, and 0.56. Hall Effect results show that the free carrier density has a very weak temperature dependence and increases about a factor of 4, when the Ga composition increases from x = 0.019 to 0.56. The photoluminescence (PL) peak energy has also weak temperature dependence shifting to higher energies and the PL line shape becomes increasingly asymmetrical and broadens with increasing Ga composition. The observed characteristics of the PL spectra are explained in terms of the transitions from free electron to localized tail states and the high electron density induced many-body effects. The bowing parameter of GaxIn1-xN is obtained from the raw PL data as 2.5 eV. However, when the high carrier density induced effects are taken into account, it increases by about 14% to 2.9 eV. Furthermore, the temperature dependence of the PL peak becomes more pronounced and follows the expected temperature dependence of the bandgap variation

    High Efficacy of Two Artemisinin-Based Combinations (Artesunate + Amodiaquine and Artemether + Lumefantrine) in Caala, Central Angola.

    Get PDF
    In April 2004, 137 children 6-59 months of age with uncomplicated Plasmodium falciparum (Pf) malaria (Caala, Central Angola) were randomized to receive either artemether-lumefantrine (Coartem) or artesunate + amodiaquine (ASAQ). After 28 days of follow-up, there were 2/61 (3.2%) recurrent parasitemias in the Coartem group and 4/64 (6.2%) in the ASAQ group (P = 0.72), all classified as re-infections after PCR genotyping (cure rate = 100% [95%CI: 94-100] in both groups). Only one patient (ASAQ group) had gametocytes on day 28 versus five (Coartem) and three (ASAQ) at baseline. Compared with baseline, anemia was significantly improved after 28 days of follow-up in both groups (Coartem: from 54.1% to 13.4%; ASAQ: from 53.1% to 15.9%). Our findings are in favor of a high efficacy of both combinations in Caala. Now that Coartem has been chosen as the new first-line anti-malarial, the challenge is to insure that this drug is available and adequately used

    A model for the current instabilities in GaAs‐AlGaAs heterojunction

    Get PDF
    A model is proposed for the description of the current instabilities in GaAs-AlGaAs heterojunctions. It consists of three parts: the injection of electrons via the contact into the AlGaAs layer, the partial capture of these electrons in deep centers, and the change with time of the band structure. This last ingredient is crucial, since due to the increase of the total number of electrons in the AlGaAs layer the band bending decreases making real-space transfer from the AlGaAs layer to the two-dimensional electron gas possible. We have performed quasistationary simulations of the time dependence of the current. The velocities, average energies, capture rates, etc. were taken from Monte Carlo simulations. It turned out, that the parameters for the modeling of the contact, which are to a high degree unknown, play an essential role

    Nonlinear dynamics of non-equilibrium holes in p-type modulation-doped GaInNAs/GaAs quantum wells

    Get PDF
    Nonlinear charge transport parallel to the layers of p-modulation-doped GaInNAs/GaAs quantum wells (QWs) is studied both theoretically and experimentally. Experimental results show that at low temperature, T = 13 K, the presence of an applied electric field of about 6 kV/cm leads to the heating of the high mobility holes in the GaInNAs QWs, and their real-space transfer (RST) into the low-mobility GaAs barriers. This results in a negative differential mobility and self-generated oscillatory instabilities in the RST regime. We developed an analytical model based upon the coupled nonlinear dynamics of the real-space hole transfer and of the interface potential barrier controlled by space-charge in the doped GaAs layer. Our simulation results predict dc bias-dependent self-generated current oscillations with frequencies in the high microwave range
    corecore