28 research outputs found

    Iron homeostasis and oxidative stress in idiopathic pulmonary alveolar proteinosis: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lung injury caused by both inhaled dusts and infectious agents depends on increased availability of iron and metal-catalyzed oxidative stress. Because inhaled particles, such as silica, and certain infections can cause secondary pulmonary alveolar proteinosis (PAP), we tested the hypothesis that idiopathic PAP is associated with an altered iron homeostasis in the human lung.</p> <p>Methods</p> <p>Healthy volunteers (n = 20) and patients with idiopathic PAP (n = 20) underwent bronchoalveolar lavage and measurements were made of total protein, iron, tranferrin, transferrin receptor, lactoferrin, and ferritin. Histochemical staining for iron and ferritin was done in the cell pellets from control subjects and PAP patients, and in lung specimens of patients without cardiopulmonary disease and with PAP. Lavage concentrations of urate, glutathione, and ascorbate were also measured as indices of oxidative stress.</p> <p>Results</p> <p>Lavage concentrations of iron, transferrin, transferrin receptor, lactoferrin, and ferritin were significantly elevated in PAP patients relative to healthy volunteers. The cells of PAP patients had accumulated significant iron and ferritin, as well as considerable amounts of extracellular ferritin. Immunohistochemistry for ferritin in lung tissue revealed comparable amounts of this metal-storage protein in the lower respiratory tract of PAP patients both intracellularly and extracellularly. Lavage concentrations of ascorbate, glutathione, and urate were significantly lower in the lavage fluid of the PAP patients.</p> <p>Conclusion</p> <p>Iron homeostasis is altered in the lungs of patients with idiopathic PAP, as large amounts of catalytically-active iron and low molecular weight anti-oxidant depletion are present. These findings suggest a metal-catalyzed oxidative stress in the maintenance of this disease.</p

    Type IV collagen drives alveolar epithelial-endothelial association and the morphogenetic movements of septation

    Get PDF
    Background: Type IV collagen is the main component of the basement membrane that gives strength to the blood-gas barrier (BGB). In mammals, the formation of a mature BGB occurs primarily after birth during alveologenesis and requires the formation of septa from the walls of the saccule. In contrast, in avians, the formation of the BGB occurs rapidly and prior to hatching. Mutation in basement membrane components results in an abnormal alveolar phenotype; however, the specific role of type IV collagen in regulating alveologenesis remains unknown. Results: We have performed a microarray expression analysis in late chick lung development and found that COL4A1 and COL4A2 were among the most significantly upregulated genes during the formation of the avian BGB. Using mouse models, we discovered that mutations in murine Col4a1 and Col4a2 genes affected the balance between lung epithelial progenitors and differentiated cells. Mutations in Col4a1 derived from the vascular component were sufficient to cause defects in vascular development and the BGB. We also show that Col4a1 and Col4a2 mutants displayed disrupted myofibroblast proliferation, differentiation and migration. Lastly, we revealed that addition of type IV collagen protein induced myofibroblast proliferation and migration in monolayer culture and increased the formation of mesenchymal-epithelial septal-like structures in co-culture. Conclusions: Our study showed that type IV collagen and, therefore the basement membrane, play fundamental roles in coordinating alveolar morphogenesis. In addition to its role in the formation of epithelium and vasculature, type IV collagen appears to be key for alveolar myofibroblast development by inducing their proliferation, differentiation and migration throughout the developing septum

    Pneumococcal 6-phosphogluconate-dehydrogenase, a putative adhesin, induces protective immune response in mice

    No full text
    For most bacteria, adherence to human cells is achieved by bacterial lectins binding to mammalian surface glyconjugates. 6-Phosphogluconate dehydrogenase (6PGD) was identified by us as one of Streptococcus pneumoniae cell wall lectin proteins, which elicits an age-dependent immune response in humans. This study assesses the role of 6PGD in S. pneumoniae pathogenesis as an adhesin and its ability to elicit a protective immune response in mice. Recombinant 6PGD (r6PGD) was cloned from S. pneumoniae serotype 3 (strain WU2). r6PGD interference in adhesion of three genetically unrelated unencapsulated pneumococcal strains (3路8, 14路8 and R6) and two genetically unrelated encapsulated pneumococcal strains (WU2 and D39) to A549 type II lung carcinoma cell was tested. BALB/c mice were immunized with r6PGD and boosted after 3 weeks. Immunized mice were challenged intranasally with a lethal dose of S. pneumoniae. r6PGD inhibited 90% and 80% of pneumococcal adhesion to the A549 cells of three unencapsulated S. pneumoniae strains and two encapsulated S. pneumoniae strains, respectively, in a concentration-dependent manner (P< 0路05). Antibodies to r6PGD produced in mice significantly inhibited bacterial adhesion to A549 cell (P< 0路05). Immunization of mice with r6PGD protected 60% (P< 0路001) of mice for 5 days and 40% (P< 0路05) of the mice for 21 days following intranasal lethal challenge. We have identified 6PGD as a surface-located immunogenic lectin protein capable of acting as an adhesin. 6PGD importance to bacterial pathogenesis was demonstrated by the ability of r6PGD to elicit a protective immune response in mice
    corecore