672 research outputs found

    Quantum thermodynamics: thermodynamics at the nanoscale

    Full text link
    A short introduction on quantum thermodynamics is given and three new topics are discussed: 1) Maximal work extraction from a finite quantum system. The thermodynamic prediction fails and a new, general result is derived, the ``ergotropy''. 2) In work extraction from two-temperature setups, the presence of correlations can push the effective efficiency beyond the Carnot bound. 3) In the presence of level crossing, non-slow changes may be more optimal than slow ones.Comment: 5 pages. Talk given at Physics of Quantum Electronics (PQE2004), Snowbird, by Th.M. Nieuwenhuize

    On the absence of conduction electrons in the antiferromagnetic part of the phase-separated states in magnetic semiconductors

    Full text link
    We have calculated the energies of the phase-separated states for degenerate antiferromagnetic semiconductors including the possibility of the existence of conduction electrons in the antiferromagnetic part of the phase-separated states. It is demonstrated that, at T=0, the minimum energy corresponds to a droplet phase with absence of electrons in the antiferromagnetic part.Comment: 13 pages, 4 figure

    Maximal work extraction from quantum systems

    Get PDF
    Thermodynamics teaches that if a system initially off-equilibrium is coupled to work sources, the maximum work that it may yield is governed by its energy and entropy. For finite systems this bound is usually not reachable. The maximum extractable work compatible with quantum mechanics (``ergotropy'') is derived and expressed in terms of the density matrix and the Hamiltonian. It is related to the property of majorization: more major states can provide more work. Scenarios of work extraction that contrast the thermodynamic intuition are discussed, e.g. a state with larger entropy than another may produce more work, while correlations may increase or reduce the ergotropy.Comment: 5 pages, 0 figures, revtex

    Casimir interaction between two concentric cylinders: exact versus semiclassical results

    Get PDF
    The Casimir interaction between two perfectly conducting, infinite, concentric cylinders is computed using a semiclassical approximation that takes into account families of classical periodic orbits that reflect off both cylinders. It is then compared with the exact result obtained by the mode-by-mode summation technique. We analyze the validity of the semiclassical approximation and show that it improves the results obtained through the proximity theorem.Comment: 28 pages, 5 figures include

    Extended Gibbs ensembles with flow

    Full text link
    A statistical treatment of finite unbound systems in the presence of collective motions is presented and applied to a classical Lennard-Jones Hamiltonian, numerically simulated through molecular dynamics. In the ideal gas limit, the flow dynamics can be exactly re-casted into effective time-dependent Lagrange parameters acting on a standard Gibbs ensemble with an extra total energy conservation constraint. Using this same ansatz for the low density freeze-out configurations of an interacting expanding system, we show that the presence of flow can have a sizeable effect on the microstate distribution.Comment: 7 pages, 4 figure

    Hamilton-Jacobi Theory and Information Geometry

    Full text link
    Recently, a method to dynamically define a divergence function DD for a given statistical manifold (M ,g ,T)(\mathcal{M}\,,g\,,T) by means of the Hamilton-Jacobi theory associated with a suitable Lagrangian function L\mathfrak{L} on TMT\mathcal{M} has been proposed. Here we will review this construction and lay the basis for an inverse problem where we assume the divergence function DD to be known and we look for a Lagrangian function L\mathfrak{L} for which DD is a complete solution of the associated Hamilton-Jacobi theory. To apply these ideas to quantum systems, we have to replace probability distributions with probability amplitudes.Comment: 8 page

    Vacuum Polarization and Energy Conditions at a Planar Frequency Dependent Dielectric to Vacuum Interface

    Full text link
    The form of the vacuum stress-tensor for the quantized scalar field at a dielectric to vacuum interface is studied. The dielectric is modeled to have an index of refraction that varies with frequency. We find that the stress-tensor components, derived from the mode function expansion of the Wightman function, are naturally regularized by the reflection and transmission coefficients of the mode at the boundary. Additionally, the divergence of the vacuum energy associated with a perfectly reflecting mirror is found to disappear for the dielectric mirror at the expense of introducing a new energy density near the surface which has the opposite sign. Thus the weak energy condition is always violated in some region of the spacetime. For the dielectric mirror, the mean vacuum energy density per unit plate area in a constant time hypersurface is always found to be positive (or zero) and the averaged weak energy condition is proven to hold for all observers with non-zero velocity along the normal direction to the boundary. Both results are found to be generic features of the vacuum stress-tensor and not necessarily dependent of the frequency dependence of the dielectric.Comment: 16 pages, 4 figures, Revtex style Minor typographic corrections to equations and tex

    Beyond the relativistic mean-field approximation (II): configuration mixing of mean-field wave functions projected on angular momentum and particle number

    Get PDF
    The framework of relativistic self-consistent mean-field models is extended to include correlations related to the restoration of broken symmetries and to fluctuations of collective variables. The generator coordinate method is used to perform configuration mixing of angular-momentum and particle-number projected relativistic wave functions. The geometry is restricted to axially symmetric shapes, and the intrinsic wave functions are generated from the solutions of the relativistic mean-field + Lipkin-Nogami BCS equations, with a constraint on the mass quadrupole moment. The model employs a relativistic point-coupling (contact) nucleon-nucleon effective interaction in the particle-hole channel, and a density-independent δ\delta-interaction in the pairing channel. Illustrative calculations are performed for 24^{24}Mg, 32^{32}S and 36^{36}Ar, and compared with results obtained employing the model developed in the first part of this work, i.e. without particle-number projection, as well as with the corresponding non-relativistic models based on Skyrme and Gogny effective interactions.Comment: 37 pages, 10 figures, submitted to Physical Review

    Beyond the relativistic mean-field approximation: configuration mixing of angular momentum projected wave functions

    Get PDF
    We report the first study of restoration of rotational symmetry and fluctuations of the quadrupole deformation in the framework of relativistic mean-field models. A model is developed which uses the generator coordinate method to perform configuration mixing calculations of angular momentum projected wave functions, calculated in a relativistic point-coupling model. The geometry is restricted to axially symmetric shapes, and the intrinsic wave functions are generated from the solutions of the constrained relativistic mean-field + BCS equations in an axially deformed oscillator basis. A number of illustrative calculations are performed for the nuclei 194Hg and 32Mg, in comparison with results obtained in non-relativistic models based on Skyrme and Gogny effective interactions.Comment: 32 pages, 14 figures, submitted to Phys. Rev.

    Quantum measurement as driven phase transition: An exactly solvable model

    Get PDF
    A model of quantum measurement is proposed, which aims to describe statistical mechanical aspects of this phenomenon, starting from a purely Hamiltonian formulation. The macroscopic measurement apparatus is modeled as an ideal Bose gas, the order parameter of which, that is, the amplitude of the condensate, is the pointer variable. It is shown that properties of irreversibility and ergodicity breaking, which are inherent in the model apparatus, ensure the appearance of definite results of the measurement, and provide a dynamical realization of wave-function reduction or collapse. The measurement process takes place in two steps: First, the reduction of the state of the tested system occurs over a time of order â„Ź/(TN1/4)\hbar/(TN^{1/4}), where TT is the temperature of the apparatus, and NN is the number of its degrees of freedom. This decoherence process is governed by the apparatus-system interaction. During the second step classical correlations are established between the apparatus and the tested system over the much longer time-scale of equilibration of the apparatus. The influence of the parameters of the model on non-ideality of the measurement is discussed. Schr\"{o}dinger kittens, EPR setups and information transfer are analyzed.Comment: 35 pages revte
    • …
    corecore