16 research outputs found

    Occurrence of Bacterial Pathogens and Human Noroviruses in Shellfish-Harvesting Areas and Their Catchments in France

    Get PDF
    During a 2-year study, the presence of human pathogenic bacteria and noroviruses was investigated in shellfish, seawater and/or surface sediments collected from three French coastal shellfish-harvesting areas as well as in freshwaters from the corresponding upstream catchments. Bacteria isolated from these samples were further analyzed. Escherichia coli isolates classified into the phylogenetic groups B2, or D and enterococci from Enterococcus faecalis and E. faecium species were tested for the presence of virulence genes and for antimicrobial susceptibility. Salmonella members were serotyped and the most abundant serovars (Typhimurium and its monophasic variants and Mbandaka) were genetically characterized by high discriminative subtyping methods. Campylobacter and Vibrio were identified at the species level, and haemolysin-producing Vibrio parahaemolyticus were searched by tdh- and trh- gene detection. Main results showed a low prevalence of Salmonella in shellfish samples where only members of S. Mbandaka were found. Campylobacter were more frequently isolated than Salmonella and a different distribution of Campylobacter species was observed in shellfish compared to rivers, strongly suggesting possible additional inputs of bacteria. Statistical associations between enteric bacteria, human noroviruses (HuNoVs) and concentration of fecal indicator bacteria revealed that the presence of Salmonella was correlated with that of Campylobacter jejuni and/or C. coli as well as to E. coli concentration. A positive correlation was also found between the presence of C. lari and the detection of HuNoVs. This study highlights the importance of simultaneous detection and characterization of enteric and marine pathogenic bacteria and human noroviruses not only in shellfish but also in catchment waters for a hazard assessment associated with microbial contamination of shellfish

    A Six Years (2010–2016) Longitudinal Survey of the Four Serotypes of Dengue Viruses in Lao PDR

    No full text
    Dengue fever is the most prevalent arthropod-borne viral infection of humans in tropical and subtropical countries. Since 1979, dengue has been reported to be endemic in the Lao People’s Democratic Republic (PDR), as in many countries in Southeast Asia, with a complex circulation of the four dengue viruses’ serotypes (DENV-1 to DENV-4). By sequencing the complete envelope protein, we explored a panel of samples from five Lao Provinces (Vientiane capital, Luangprabang, Bolikhamxay, Saravane, Attapeu) to enrich knowledge about the co-circulation of DENVs in Lao PDR between 2010 and 2016. Phylogenetic analyses highlighted the specific circulation of DENV-1 genotype I, DENV-2 genotype Asian I, DENV-4 genotype I and the co-circulation of DENV-3 genotype II and III. The continuous co-circulation of the four serotypes was underlined, with genotype or cluster shifts among DENV-3 and DENV-1. These data suggested the emergence or re-emergence of DENV strains associated with epidemic events, potentially linked to the exchanges within the territory and with neighboring countries. Indeed, the increasing local or regional connections favored the dissemination of new isolates or new clusters around the country. Since 2012, the surveillance and alert system created in Vientiane capital by the Institut Pasteur du Laos appears to be a strategic tool for monitoring the circulation of the four serotypes, especially in this endemic country, and allows for improving dengue epidemiological knowledge to anticipate epidemic events better

    Are Variable-Number Tandem Repeats Appropriate for Genotyping Mycobacterium leprae?▿

    No full text
    Comparative genomics analysis of the Tamil Nadu strain of Mycobacterium leprae has uncovered several polymorphic sites with potential as epidemiological tools. In this study we compared the stability of two different markers of genomic biodiversity of M. leprae in several biopsy samples isolated from the same leprosy patient. The first type comprises five different variable-number tandem repeats (VNTR), while the second is composed of three single nucleotide polymorphisms (SNP). Contrasting results were obtained, since no variation was seen in the SNP profiles of M. leprae from 42 patients from 7 different locations in Mali whereas the VNTR profiles varied considerably. Furthermore, since variation in the VNTR pattern was seen not only between different isolates of M. leprae but also between biopsy samples from the same patient, these VNTR may be too dynamic for use as epidemiological markers for leprosy

    Rapid Genomic Characterization of SARS-CoV-2 by Direct Amplicon-Based Sequencing Through Comparison of MinION and Illumina iSeq100TM System

    No full text
    International audienceGlobal human health is increasingly challenged by emerging viral threats, especially those observed over the last 20 years with coronavirus-related human diseases, such as the Severe Acute Respiratory Syndrome (SARS) and the Middle East Respiratory Syndrome (MERS). Recently, in late December 2019, a novel Betacoronavirus, SARS-CoV-2, originating from the Chinese city of Wuhan, emerged and was then identified as the causative agent of a new severe form of pneumonia, COVID-19. Real-time genome sequencing in such viral outbreaks is a key issue to confirm identification and characterization of the involved pathogen and to help establish public health measures. Here, we implemented an amplicon-based sequencing approach combined with easily deployable next-generation sequencers, the small and hand-held MinION sequencer and the latest most compact Illumina sequencer, the iSeq100TM system. Our results highlighted the great potential of the amplicon-based approach to obtain consensus genomes of SARS-CoV-2 from clinical samples in just a few hours. Both these mobile next-generation sequencers are proven to be efficient to obtain viral sequences and easy to implement, with a minimal laboratory environment requirement, providing useful opportunities in the field and in remote areas

    Methanohalophilus profundi sp. nov., a methylotrophic halophilic piezophilic methanogen isolated from a deep hypersaline anoxic basin

    No full text
    A novel anaerobic methylotrophic halophilic methanogen strain SLHTYROT was isolated from a deep hypersaline anoxic basin called “Tyro” located in the Eastern Mediterranean Sea. Cells of SLHTYROT were motile cocci. The strain SLHTYROT grew between 12 and 37 °C (optimum 30 °C), at pH between 6.5 and 8.2 (optimum pH 7.5) and salinity from 45 to 240 g L−1 NaCl (optimum 135 g L−1). Strain SLHTYROT was methylotrophic methanogen able to use methylated compounds (trimethylamine, dimethylamine, monomethylamine and methanol). Strain SLHTYROT was able to grow at in situ hydrostatic pressure and temperature conditions (35 MPa, 14 °C). Phylogenetic analysis based on 16S rRNA gene and mcrA gene sequences indicated that strain SLHTYROT was affiliated to genus Methanohalophilus within the order Methanosarcinales. It shared >99.16% of the 16S rRNA gene sequence similarity with strains of other Methanohalophilus species. Based on ANIb, AAI and dDDH measurements, and the physiological properties of the novel isolate, we propose that strain SLHTYROT should be classified as a representative of a novel species, for which the name Methanohalophilus profundi sp. nov. is proposed; the type strain is SLHTYROT (=DSM 108854 = JCM 32768 = UBOCC-M-3308)

    Using Background Sequencing Data to Anticipate DENV-1 Circulation in the Lao PDR

    No full text
    International audienceSince its first detection in 1979, dengue fever has been considered a major public health issue in the Lao People’s Democratic Republic (PDR). Dengue virus (DENV) serotype 1 was the cause of an epidemic in 2010–2011. Between 2012 and 2020, major outbreaks due successively to DENV-3, DENV-4 and recently DENV-2 have been recorded. However, DENV-1 still co-circulated in the country over this period. Here, we summarize epidemiological and molecular data of DENV-1 between 2016 and 2020 in the Lao PDR. Our data highlight the continuous circulation of DENV-1 in the country at levels ranging from 16% to 22% among serotyping tests. In addition, the phylogenetic analysis has revealed the circulation of DENV-1 genotype I at least since 2008 with a co-circulation of different clusters. Sequence data support independent DENV-1 introductions in the Lao PDR correlated with an active circulation of this serotype at the regional level in Southeast Asia. The maintenance of DENV-1 circulation over the last ten years supports a low level of immunity against this serotype within the Lao population. Thereby, the risk of a DENV-1 epidemic cannot be ruled out in the future, and this emphasizes the importance of maintaining an integrated surveillance approach to prevent major outbreak

    Complete Genome Sequences of Monkeypox Virus from a French Clinical Sample and the Corresponding Isolated Strain, Obtained Using Nanopore Sequencing

    No full text
    International audienceWe report the whole-genome sequences of a monkeypox virus from the skin lesion of a French patient and the corresponding isolated viral strain. Both viral genomic sequences were successfully obtained by applying shotgun metagenomics using the Oxford Nanopore Technologies sequencing approach

    Direct metagenomic and amplicon-based Nanopore sequencing of French human monkeypox from clinical specimen

    No full text
    International audienceWe report the whole-genome sequence of monkeypox virus obtained using MinION technology (Oxford Nanopore Technologies) from a French clinical specimen during the 2022 epidemic. Amplicon-based sequencing and shotgun metagenomic approaches were directly applied to the sample

    Presence of Enterohemorrhagic Escherichia coli ST678/O104:H4 in France Prior to 2011▿

    No full text
    Two isolates of enterohemorrhagic Escherichia coli (EHEC) O104:H4 were isolated in France in 2004 and 2009. Both were characterized and compared to the strain which caused the German outbreak in 2011 and to other O104:H4 strains. This suggests that different O104:H4 EHEC strains were present several years prior to the 2011 outbreak
    corecore