78 research outputs found

    Positively charged amino acids are essential for electron transfer and protein-protein interactions in the soluble methane monooxygenase complex from methylococcus capsulatus (Bath)

    Get PDF
    The soluble methane monooxygenase (sMMO) complex from Methylococcus capsulatus (Bath) catalyses oxygen- and NAD(P)H-dependent oxygenation of methane, propene and other substrates. Whole-complex sMMO oxygenase activity requires all three sMMO components: the hydroxylase, the reductase and protein B. Also, in the presence of hydrogen peroxide, the hydroxylase alone catalyses substrate oxygenation via the peroxide shunt reaction. We investigated the effect of amine cross-linking on hydroxylase activity in order to probe the role of a gross conformational change that occurs in the hydroxylase upon binding of the other protein components. The cross-linker inhibited hydroxylase activity in the whole complex but this effect was due to covalent modification of primary amine groups rather than cross-linking. Covalent modification of arginine side-chains on the hydroxylase had a similar effect but, most remarkably, neither form of modification affected the activity of the hydroxylase via the peroxide shunt reaction. It was shown that covalent modification of positively charged groups on the hydroxylase, which occurred at multiple sites, interfered with its physical and functional interactions with protein B and with the passage of electrons from the reductase. These results indicate that protein B and the reductase of the sMMO complex interact via positively charged groups on the surface of the hydroxylase to induce a conformational change that is necessary for delivery of electrons into the active site of the hydroxylase. Modification of positively charged groups on protein B had no effect on its function, consistent with the hypothesis that positively charged groups on the hydroxylase interact with negative charges on protein B. Thus, we have discovered a means of specifically inactivating the interactions between the sMMO complex while preserving the catalytic activity of the hydroxylase active site which provides a new method of studying intercomponent interactions within sMMO.</p

    Variants of PLCXD3 are not associated with variant or sporadic Creutzfeldt-Jakob disease in a large international study

    Get PDF
    BACKGROUND: Human prion diseases are relentlessly progressive neurodegenerative disorders which include sporadic Creutzfeldt-Jakob disease (sCJD) and variant CJD (vCJD). Aside from variants of the prion protein gene (PRNP) replicated association at genome-wide levels of significance has proven elusive. A recent association study identified variants in or near to the PLCXD3 gene locus as strong disease risk factors in multiple human prion diseases. This study claimed the first non-PRNP locus to be highly significantly associated with prion disease in genomic studies. METHODS: A sub-study of a genome-wide association study with imputation aiming to replicate the finding at PLCXD3 including 129 vCJD and 2500 sCJD samples. Whole exome sequencing to identify rare coding variants of PLCXD3. RESULTS: Imputation of relevant polymorphisms was accurate based on wet genotyping of a sample. We found no supportive evidence that PLCXD3 variants are associated with disease. CONCLUSION: The marked discordance in vCJD genotype frequencies between studies, despite extensive overlap in vCJD cases, and the finding of Hardy-Weinberg disequilibrium in the original study, suggests possible reasons for the discrepancies between studies

    Topical curcumin nanocarriers are neuroprotective in eye disease

    Get PDF
    Curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5dione) is a polyphenol extracted from turmeric that has long been advocated for the treatment of a variety of conditions including neurodegenerative and inflammatory disorders. Despite this promise, the clinical use of curcumin has been limited by the poor solubility and low bioavailability of this molecule. In this article, we describe a novel nanocarrier formulation comprising Pluronic-F127 stabilised D-α-Tocopherol polyethene glycol 1000 succinate nanoparticles, which were used to successfully solubilize high concentrations (4.3 mg/mL) of curcumin. Characterisation with x-ray diffraction and in vitro release assays localise curcumin to the nanocarrier interior, with each particle measuring <20 nm diameter. Curcumin-loaded nanocarriers (CN) were found to significantly protect against cobalt chloride induced hypoxia and glutamate induced toxicity in vitro, with CN treatment significantly increasing R28 cell viability. Using established glaucoma-related in vivo models of ocular hypertension (OHT) and partial optic nerve transection (pONT), topical application of CN twice-daily for three weeks significantly reduced retinal ganglion cell loss compared to controls. Collectively, these results suggest that our novel topical CN formulation has potential as an effective neuroprotective therapy in glaucoma and other eye diseases with neuronal pathology

    Urinary Extracellular Domain of Neurotrophin Receptor p75 as a Biomarker for Amyotrophic Lateral Sclerosis in a Chinese cohort

    Get PDF
    To comprehensively assess whether p75ECD in urine could be a candidate biomarker for ALS evaluation. Urine samples were collected from 101 ALS patients, 108 patients with other neurological disease (OND) and 97 healthy controls. 61 ALS patients were followed up with clinical data including ALSFRS-r every 6 to 12 months, 23 ALS patients died and 17 ALS patients lost touch during follow up period. Enzyme-linked immunoassay was employed to determine urine p75ECD concentration. The ALSFRS-r was employed to assess the severity of ALS. The concentration of p75ECD in ALS was significantly higher than that of OND and CTRL (p < 0.001). Additionally, urine p75ECD concentrations in ALS-definite grade patients were significantly higher than that in ALS-probable grade and ALS-possible grade patients (p < 0.001). Higher urine p75ECD concentrations were correlated with increased clinical stage (p = 0.0309); urine p75ECD concentrations and ALSFRS-r were negatively correlated (p = 0.022); and urine p75ECD concentration in the fast-progressing ALS group was significantly higher than that in slow-progression (p = 0.0026). Our finding indicates that urine p75ECD concentration provides additional evidence for patients with clinically suspected ALS, and can be employed to evaluate ALS-severity

    G-quadruplex-binding small molecules ameliorate C9orf72 FTD/ALS pathology in vitro and in vivo

    Get PDF
    Intronic GGGGCC repeat expansions in C9orf72 are the most common known cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), which are characterised by degeneration of cortical and motor neurons, respectively. Repeat expansions have been proposed to cause disease by both the repeat RNA forming foci that sequester RNA-binding proteins and through toxic dipeptide repeat proteins generated by repeat-associated non-ATG translation. GGGGCC repeat RNA folds into a G-quadruplex secondary structure, and we investigated whether targeting this structure is a potential therapeutic strategy. We performed a screen that identified three structurally related small molecules that specifically stabilise GGGGCC repeat G-quadruplex RNA We investigated their effect in C9orf72 patient iPSC-derived motor and cortical neurons and show that they significantly reduce RNA foci burden and the levels of dipeptide repeat proteins. Furthermore, they also reduce dipeptide repeat proteins and improve survival in vivo, in GGGGCC repeat-expressing Drosophila Therefore, small molecules that target GGGGCC repeat G-quadruplexes can ameliorate the two key pathologies associated with C9orf72 FTD/ALS These data provide proof of principle that targeting GGGGCC repeat G-quadruplexes has therapeutic potential

    ‘Test n Treat (TnT)’– Rapid testing and same-day, on-site treatment to reduce rates of chlamydia in sexually active further education college students: study protocol for a cluster randomised feasibility trial

    Get PDF
    Background Sexually active young people attending London further education (FE) colleges have high rates of chlamydia, but screening rates are low. We will conduct a cluster randomised feasibility trial of frequent, rapid, on-site chlamydia testing and same-day treatment (Test and Treat (TnT)) in six FE colleges (with parallel qualitative and economic assessments) to assess the feasibility of conducting a future trial to investigate if TnT reduces chlamydia rates. Methods We will recruit 80 sexually active students aged 16–24 years from public areas at each of six colleges. All participants (total n = 480) will be asked to provide samples (urine for males, self-taken vaginal swabs for females) and complete questionnaires on sexual lifestyle and healthcare use at baseline and after 7 months. Participants will be informed that baseline samples will not be tested for 7 months and be advised to get screened separately. Colleges will be randomly allocated to the intervention (TnT) or the control group (no TnT). One and 4 months after recruitment, participants at each intervention college (n = 3) will be texted and invited for on-site chlamydia tests using the 90-min Cepheid GeneXpert system. Students with positive results will be asked to see a visiting nurse health adviser for same-day treatment and partner notification, (backed by genitourinary medicine follow-up). Participants in control colleges (n = 3) will receive ‘thank you’ texts 1 and 4 months after recruitment. Seven months after recruitment, participants from both groups will be invited to complete questionnaires and provide samples for TnT. All samples will be tested, and same-day treatment offered to students with positive results. Acceptability of TnT will be assessed by qualitative interviews of purposively sampled students (n = 30) and college staff (n = 12). We will collect data on costs of TnT and usual healthcare. Discussion Findings will provide key values to inform feasibility, sample size and timescales of a future definitive trial of TnT in FE colleges, including: Recruitment rates TnT uptake rates Follow-up rates Prevalence of chlamydia in participants at baseline and 7 months Acceptability of TnT to students and college staff Estimate of the cost per person screened/treated in TnT versus usual care Trial registration International Standard Randomised Controlled Trials Registry, ID: ISRCTN58038795, Registered on 31 August 2016

    Supportive and symptomatic management of amyotrophic lateral sclerosis

    Get PDF
    The main aims in the care of individuals with amyotrophic lateral sclerosis (ALS) are to minimize morbidity and maximize quality of life. Although no cure exists for ALS, supportive and symptomatic care provided by a specialist multidisciplinary team can improve survival. The basis for supportive management is shifting from expert consensus guidelines towards an evidence-based approach, which encourages the use of effective treatments and could reduce the risk of harm caused by ineffective or unsafe interventions. For example, respiratory support using noninvasive ventilation has been demonstrated to improve survival and quality of life, whereas evidence supporting other respiratory interventions is insufficient. Increasing evidence implicates a causal role for metabolic dysfunction in ALS, suggesting that optimizing nutrition could improve quality of life and survival. The high incidence of cognitive dysfunction and its impact on prognosis is increasingly recognized, although evidence for effective treatments is lacking. A variety of strategies are used to manage the other physical and psychological symptoms, the majority of which have yet to be thoroughly evaluated. The need for specialist palliative care throughout the disease is increasingly recognized. This Review describes the current approaches to symptomatic and supportive care in ALS and outlines the current guidance and evidence for these strategies

    Defining novel functions for cerebrospinal fluid in ALS pathophysiology

    Get PDF

    C9orf72-mediated ALS and FTD: multiple pathways to disease

    Get PDF
    The discovery that repeat expansions in the C9orf72 gene are a frequent cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) has revolutionized our understanding of these diseases. Substantial headway has been made in characterizing C9orf72-mediated disease and unravelling its underlying aetiopathogenesis. Three main disease mechanisms have been proposed: loss of function of the C9orf72 protein and toxic gain of function from C9orf72 repeat RNA or from dipeptide repeat proteins produced by repeat-associated non-ATG translation. Several downstream processes across a range of cellular functions have also been implicated. In this article, we review the pathological and mechanistic features of C9orf72-associated FTD and ALS (collectively termed C9FTD/ALS), the model systems used to study these conditions, and the probable initiators of downstream disease mechanisms. We suggest that a combination of upstream mechanisms involving both loss and gain of function and downstream cellular pathways involving both cell-autonomous and non-cell-autonomous effects contributes to disease progression

    Ductile knee braced frames with shear yielding knee for seismic resistant structures

    No full text
    Engineering Structures164263-269ENST
    corecore