14 research outputs found

    Closest horizons of Hsp70 engagement to manage neurodegeneration

    Get PDF
    Our review seeks to elucidate the current state-of-the-art in studies of 70-kilodalton-weighed heat shock proteins (Hsp70) in neurodegenerative diseases (NDs). The family has already been shown to play a crucial role in pathological aggregation for a wide spectrum of brain pathologies. However, a slender boundary between a big body of fundamental data and its implementation has only recently been crossed. Currently, we are witnessing an anticipated advancement in the domain with dozens of studies published every month. In this review, we briefly summarize scattered results regarding the role of Hsp70 in the most common NDs including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). We also bridge translational studies and clinical trials to portray the output for medical practice. Available options to regulate Hsp70 activity in NDs are outlined, too

    Closest horizons of Hsp70 engagement to manage neurodegeneration

    Get PDF
    Our review seeks to elucidate the current state-of-the-art in studies of 70-kilodalton-weighed heat shock proteins (Hsp70) in neurodegenerative diseases (NDs). The family has already been shown to play a crucial role in pathological aggregation for a wide spectrum of brain pathologies. However, a slender boundary between a big body of fundamental data and its implementation has only recently been crossed. Currently, we are witnessing an anticipated advancement in the domain with dozens of studies published every month. In this review, we briefly summarize scattered results regarding the role of Hsp70 in the most common NDs including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). We also bridge translational studies and clinical trials to portray the output for medical practice. Available options to regulate Hsp70 activity in NDs are outlined, too

    Influence of Fluctuations of the Geometrical Parameters on the Photonic Band Gaps in One-Dimensional Photonic Crystals

    Get PDF
    The influence of random fluctuations in the layer thicknesses in high contrast, one-dimensional Photonic Crystals (PCs) on the transmission spectra and Photonic Band Gaps (PBGs) is investigated. The change in the PBGs depends on the magnitude of the fluctuations and increases with an increase in the order of the PBG. Introducing thickness non-uniformity into the PC of up to 0.004 times the value of lattice constant for different types of fluctuation distributions has a negligible effect on either the position or the shape of the 1st and nearest PBGs. The approach suggested here allows the determination of the tolerances required in the geometrical parameters of PCs during fabrication. It also allows the optimisation of PC structures using high order PBGs

    Formation of Infrared Windows of Transparency in One-Dimensional Silicon Photonic Crystals

    Get PDF
    The optical properties of three-component one-dimensional photonic crystal (1-D PC) structures were investigated by modeling them as two-component PCs with an additional regular t-layer, using the gap map approach and the transfer matrix method. Numerical results demonstrate that the introduction of the t-layer affects the properties of the high-order photonic band gaps, replacing them with transmission bands and creating regions of transparency over certain wavelength ranges. For the first time, a map of the transmission bands for a three-component 1-D PC was generated. This map constitutes a unique design tool for infrared optical filters for silicon-based photonic integrated circuits

    Silicon Photonic Crystal Filter with Ultrawide Passband Characteristics

    No full text
    We report on what is believed to be the first example of an ultrawide, bandpass filter, based on a high-contrast multicomponent one-dimensional Si photonic crystal (PC). The effect of the disappearance of a limited number of flat stopbands and their replacement with extended passbands is demonstrated over a wide IR range. The passbands obtained exhibit a high transmission of 92% to 96% and a substantial bandwidth of 1800 nm, which is spectrally flat within the passband. The multicomponent PC model suggested can be applied to the design of any micro- or nanostructured semiconductor or dielectric material for application across a wide spectral range

    A comprehensive model of nitrogen-free ordered carbon quantum dots

    No full text
    Abstract We propose and demonstrate a novel range of models to accurately determine the optical properties of nitrogen-free carbon quantum dots (CQDs) with ordered graphene layered structures. We confirm the results of our models against the full range of experimental results for CQDs available from an extensive review of the literature. The models can be equally applied to CQDs with varied sizes and with different oxygen contents in the basal planes of the constituent graphenic sheets. We demonstrate that the experimentally observed blue fluorescent emission of nitrogen-free CQDs can be associated with either small oxidised areas on the periphery of the graphenic sheets, or with sub-nanometre non-functionalised islands of sp²-hybridised carbon with high symmetry confined in the centres of oxidised graphene sheets. Larger and/or less symmetric non-functionalised regions in the centre of functionalised graphene sheet are found to be sources of green and even red fluorescent emission from nitrogen-free CQDs. We also demonstrate an approach to simplify the modelling of the discussed sp²-islands by substitution with equivalent strained polycyclic aromatic hydrocarbons. Additionally, we show that the bandgaps (and photoluminescence) of CQDs are not dependent on either out-of-plane corrugation of the graphene sheet or the spacing between sp²-islands. Advantageously, our proposed models show that there is no need to involve light-emitting polycyclic aromatic molecules (nanographenes) with arbitrary structures grafted to the particle periphery to explain the plethora of optical phenomena observed for CQDs across the full range of experimental works

    Boron Nitride Thin Films with Anisotropic Optical Properties from Microscale Particle Density Distributions

    No full text
    Unusual optical anisotropy was experimentally observed in hexagonal boron nitride thin films produced from bulk boron nitride via ultrasonication. Both the linear and circular polarisation demonstrated a well-defined single axis of anisotropy over a large sample area. To understand this phenomenon, we employed statistical analysis of optical microscopy images and atomic force microscopy to reveal an ordered particle density distribution at the microscopic level corresponding to the optical axis observed in the polarisation data. The direction of the observed ordering matched the axis of anisotropy. Hence, we attribute the measured optical anisotropy of the thin films to microscopic variations in the particle density distribution

    Transmission properties of van der Waals materials for terahertz time-domain spectroscopy applications

    No full text
    Abstract This work contains results from studying the electro-optical properties of bulk and few-layered Van der Waals materials including intercalated graphene, phosphorene, and tungsten disulfide thin films. Different production methods and substrates are considered. The objective of the research is to assess the relevance of application of these materials in terahertz (THz) time-domain spectroscopy (TDS). Therefore, the study is conducted in the visible, NIR (near-infrared) and THz frequency ranges as the most critically in need of research when searching for effective materials for TDS

    Terahertz time-domain polarimetry of carbon nanomaterials

    No full text
    Abstract Terahertz time-domain spectroscopic polarimetry (THz-TDSP) method was used to study of polarization properties of a few-layer graphene (FLG) and a randomly oriented single-walled carbon nanotube (SWCNT) thin film on silicon (Si) substrates in terahertz (THz) frequency range under an external optical pumping (OP) and an external static magnetic field (MF). Frequency dependencies of azimuth and ellipticity angles of a polarization ellipse of the samples were obtained experimentally. The results confirm the fact that, based on carbon nanomaterials, it is possible to devise tunable THz polarization modulators for use in the latest security and telecommunication systems
    corecore