7,474 research outputs found

    Decay of far flow field in trailing vortices

    Get PDF
    A finite difference machine code is used in the wake vortex problems in the quasi-cylindrical boundary layer approximation. A turbulent energy model containing new features is developed that accounts for the major effects disclosed by more advanced models in which the parameters are not yet established. Several puzzles that arose in previous theoretical investigations of wake vortices are resolved

    Mixing effectiveness in the Apollo oxygen tanks of spin-up and rotation-reversal maneuvers

    Get PDF
    Two-dimensional simulations of stratified flows in the Apollo oxygen tanks have been used to estimate the mixing effectiveness of spin-up and rotation-reversal maneuvers. Calculations have been made for square and circular cylindrical tank geometries. Differences arising from heater position on the tank wall or near the center of the tank have been investigated. In the event of a prolonged period without normal maneuvers, the potential pressure decay (drop in pressure that would result from adiabatic mixing) can be suppressed by more than a factor of two through the use of spin-up and rotation-reversal maneuvers. Changes in rotation rate of order three revolutions per hour or greater are sufficient for this purpose

    Abundances of s-process elements in planetary nebulae: Br, Kr & Xe

    Get PDF
    We identify emission lines of post-iron peak elements in very high signal-to-noise spectra of a sample of planetary nebulae. Analysis of lines from ions of Kr and Xe reveals enhancements in most of the PNe, in agreement with the theories of s-process in AGB star. Surprisingly, we did not detect lines from Br even though s-process calculations indicate that it should be produced with Kr at detectable levels.Comment: 2 pages, 1 figure, to be published in the Proceedings of the IAU Symposium 234: Planetary Nebulae in Our Galaxy and Beyond, eds. M.J. Barlow, R.H. Mende

    What thermodynamic features characterize good and bad folders? Results from a simplified off-lattice protein model

    Full text link
    The thermodynamics of the small SH3 protein domain is studied by means of a simplified model where each bead-like amino acid interacts with the others through a contact potential controlled by a 20x20 random matrix. Good folding sequences, characterized by a low native energy, display three main thermodynamical phases, namely a coil-like phase, an unfolded globule and a folded phase (plus other two phases, namely frozen and random coil, populated only at extremes temperatures). Interestingly, the unfolded globule has some regions already structured. Poorly designed sequences, on the other hand, display a wide transition from the random coil to a frozen state. The comparison with the analytic theory of heteropolymers is discussed

    Acoustic phonon scattering in a low density, high mobility AlGaN/GaN field effect transistor

    Full text link
    We report on the temperature dependence of the mobility, μ\mu, of the two-dimensional electron gas in a variable density AlGaN/GaN field effect transistor, with carrier densities ranging from 0.4×1012\times10^{12} cm−2^{-2} to 3.0×1012\times10^{12} cm−2^{-2} and a peak mobility of 80,000 cm2^{2}/Vs. Between 20 K and 50 K we observe a linear dependence μac−1=α\mu_{ac}^{-1} = \alphaT indicating that acoustic phonon scattering dominates the temperature dependence of the mobility, with α\alpha being a monotonically increasing function of decreasing 2D electron density. This behavior is contrary to predictions of scattering in a degenerate electron gas, but consistent with calculations which account for thermal broadening and the temperature dependence of the electron screening. Our data imply a deformation potential D = 12-15 eV.Comment: 3 pages, 2 figures, RevTeX. Submitted to Appl Phys Let

    Deriving bases for Abelian functions

    Full text link
    We present a new method to explicitly define Abelian functions associated with algebraic curves, for the purpose of finding bases for the relevant vector spaces of such functions. We demonstrate the procedure with the functions associated with a trigonal curve of genus four. The main motivation for the construction of such bases is that it allows systematic methods for the derivation of the addition formulae and differential equations satisfied by the functions. We present a new 3-term 2-variable addition formulae and a complete set of differential equations to generalise the classic Weierstrass identities for the case of the trigonal curve of genus four.Comment: 35page

    Spin-charge separation and localization in one-dimension

    Full text link
    We report on measurements of quantum many-body modes in ballistic wires and their dependence on Coulomb interactions, obtained from tunneling between two parallel wires in a GaAs/AlGaAs heterostructure while varying electron density. We observe two spin modes and one charge mode of the coupled wires, and map the dispersion velocities of the modes down to a critical density, at which spontaneous localization is observed. Theoretical calculations of the charge velocity agree well with the data, although they also predict an additional charge mode that is not observed. The measured spin velocity is found to be smaller than theoretically predicted.Comment: There are minor textual differences between this version and the version that has been published in Science (follow the DOI link below to obtain it). In addition, here we have had to reduce figure quality to save space on the serve

    Localization Transition in a Ballistic Quantum Wire

    Full text link
    The many-body wave-function of an interacting one-dimensional electron system is probed, focusing on the low-density, strong interaction regime. The properties of the wave-function are determined using tunneling between two long, clean, parallel quantum wires in a GaAs/AlGaAs heterostructure, allowing for gate-controlled electron density. As electron density is lowered to a critical value the many-body state abruptly changes from an extended state with a well-defined momentum to a localized state with a wide range of momentum components. The signature of the localized states appears as discrete tunneling features at resonant gate-voltages, corresponding to the depletion of single electrons and showing Coulomb-blockade behavior. Typically 5-10 such features appear, where the one-electron state has a single-lobed momentum distribution, and the few-electron states have double-lobed distributions with peaks at ±kF\pm k_F. A theoretical model suggests that for a small number of particles (N<6), the observed state is a mixture of ground and thermally excited spin states.Comment: 10 pages, 4 figures, 1 tabl
    • …
    corecore