95 research outputs found
Cellular characterisation of advanced osteoarthritis knee synovium
Objectives Osteoarthritis (OA) is increasingly recognised as a whole joint disease, with an important role for synovium. However, the repertoire of immune cells and fibroblasts that constitute OA synovium remains understudied. This study aims to characterise the cellular composition of advanced OA synovium and to explore potential correlations between different cell types and patient demographics or clinical scores.
Methods Synovium, collected from 10 patients with advanced OA during total knee replacement surgery, was collagenase-digested, and cells were stained for flow cytometry analysis. Formalin-fixed paraffin-embedded synovium was sectioned, stained with immunofluorescence, and imaged using the multiplex Cell DIVE platform. Patient demographics and clinical scores were also collected.
Results The proportion of immune cells in OA synovium varied between patients (8–38% of all cells). Macrophages and T cells were the dominant immune cell populations, together representing 76% of immune cells. Age positively correlated with the proportion of macrophages, and negatively correlated with T cells. CCR6+ T cells were found in 6/10 patients; these patients had a higher mean Kellgren-Lawrence grade across the three knee compartments. Immunofluorescence staining showed that macrophages were present in the lining as well as distributed throughout the sublining, while T and B cells were mainly localised near vessels in the sublining. Fibroblast subsets (CD45−PDPN+) based on the expression of CD34/CD90 or FAP/CD90 were identified in all patient samples, and some populations correlate with the percentage of immune cells or clinical scores. Immunofluorescence staining showed that FAP expression was particularly strong in the lining layer, but also present throughout the sublining layer. CD90 expression was exclusively found around vessels in the sublining, while CD34 was mostly found in the sublining but also occasionally in the lining layer.
Conclusions There are significant differences in the relative proportions and subsets of immune cells in OA synovium; exploratory correlative analyses suggest that these differences might be correlated with age, clinical scores, or fibroblast subsets. Additional studies are required to understand how different cell types affect OA pathobiology, and if the presence or proportion of cell subsets relates to disease phenotypes
Rpl3l gene deletion in mice reduces heart weight over time
Introduction: The ribosomal protein L3-like (RPL3L) is a heart and skeletal muscle-specific ribosomal protein and paralogue of the more ubiquitously expressed RPL3 protein. Mutations in the human RPL3L gene are linked to childhood cardiomyopathy and age-related atrial fibrillation, yet the function of RPL3L in the mammalian heart remains unknown.Methods and Results: Here, we observed that mouse cardiac ventricles express RPL3 at birth, where it is gradually replaced by RPL3L in adulthood but re-expressed with induction of hypertrophy in adults. Rpl3l gene-deleted mice were generated to examine the role of this gene in the heart, although Rpl3l−/− mice showed no overt changes in cardiac structure or function at baseline or after pressure overload hypertrophy, likely because RPL3 expression was upregulated and maintained in adulthood. mRNA expression analysis and ribosome profiling failed to show differences between the hearts of Rpl3l null and wild type mice in adulthood. Moreover, ribosomes lacking RPL3L showed no differences in localization within cardiomyocytes compared to wild type controls, nor was there an alteration in cardiac tissue ultrastructure or mitochondrial function in adult Rpl3l−/− mice. Similarly, overexpression of either RPL3 or RPL3L with adeno-associated virus −9 in the hearts of mice did not cause discernable pathology. However, by 18 months of age Rpl3l−/− null mice had significantly smaller hearts compared to wild type littermates.Conclusion: Thus, deletion of Rpl3l forces maintenance of RPL3 expression within the heart that appears to fully compensate for the loss of RPL3L, although older Rpl3l−/− mice showed a mild but significant reduction in heart weight
Storage of halved strawberry fruits affects aroma, phytochemical content and gene expression, and is affected by pre-harvest factors
Introduction: Strawberry fruit are highly valued for their aroma which develops during ripening. However, they have a short shelf-life. Low temperature storage is routinely used to extend shelf-life for transport and storage in the supply chain, however cold storage can also affect fruit aroma. Some fruit continue to ripen during chilled storage; however, strawberries are a non-climacteric fruit and hence ripening postharvest is limited. Although most strawberry fruit is sold whole, halved fruit is also used in ready to eat fresh fruit salads which are of increasing consumer demand and pose additional challenges to fresh fruit storage.
Methods: To better understand the effects of cold storage, volatilomic and transcriptomic analyses were applied to halved Fragaria x ananassa cv. Elsanta fruit stored at 4 or 8°C for up to 12 days over two growing seasons.
Results and discussion: The volatile organic compound (VOC) profile differed between 4 or 8°C on most days of storage. Major differences were detected between the two different years of harvest indicating that aroma change at harvest and during storage is highly dependent on environmental factors during growth. The major component of the aroma profile in both years was esters. Over 3000 genes changed in expression over 5 days of storage at 8°C in transcriptome analysis. Overall, phenylpropanoid metabolism, which may also affect VOCs, and starch metabolism were the most significantly affected pathways. Genes involved in autophagy were also differentially expressed. Expression of genes from 43 different transcription factor (TF) families changed in expression: mostly they were down-regulated but NAC and WRKY family genes were mainly up-regulated. Given the high ester representation amongst VOCs, the down-regulation of an alcohol acyl transferase (AAT) during storage is significant. A total of 113 differentially expressed genes were co-regulated with the AAT gene, including seven TFs. These may be potential AAT regulators
The incidence of movement disorder increases with age and contrasts with subtle and limited neuroimaging abnormalities in argininosuccinic aciduria
Argininosuccinate lyase (ASL) is integral to the urea cycle detoxifying neurotoxic ammonia and the nitric oxide (NO) biosynthesis cycle. Inherited ASL deficiency causes argininosuccinic aciduria (ASA), a rare disease with hyperammonemia and NO deficiency. Patients present with developmental delay, epilepsy and movement disorder, associated with NO-mediated downregulation of central catecholamine biosynthesis. A neurodegenerative phenotype has been proposed in ASA. To better characterise this neurodegenerative phenotype in ASA, we conducted a retrospective study in six paediatric and adult metabolic centres in the UK in 2022. We identified 60 patients and specifically looked for neurodegeneration-related symptoms: movement disorder such as ataxia, tremor and dystonia, hypotonia/fatigue and abnormal behaviour. We analysed neuroimaging with diffusion tensor imaging (DTI) magnetic resonance imaging (MRI) in an individual with ASA with movement disorders. We assessed conventional and DTI MRI alongside single photon emission computer tomography (SPECT) with dopamine analogue radionuclide 123 I-ioflupane, in Asl-deficient mice treated by hASL mRNA with normalised ureagenesis. Movement disorders in ASA appear in the second and third decades of life, becoming more prevalent with ageing and independent from the age of onset of hyperammonemia. Neuroimaging can show abnormal DTI features affecting both grey and white matter, preferentially basal ganglia. ASA mouse model with normalised ureagenesis did not recapitulate these DTI findings and showed normal 123 I-ioflupane SPECT and cerebral dopamine metabolomics. Altogether these findings support the pathophysiology of a late-onset movement disorder with cell-autonomous functional central catecholamine dysregulation but without or limited neurodegeneration of dopaminergic neurons, making these symptoms amenable to targeted therapy
Transcribing "Le Pèlerinage de Damoiselle Sapience": Scholarly Editing Covid19-Style
This article describes a methodological experiment conducted during the 13th Annual (Virtual) Schoenberg Symposium on Manuscript Studies in the Digital Age, hosted by the University of Pennsylvania, November 18–20, 2020. The experiment consisted of a “relay style” event in which three teams transcribed, revised, and prepared for submission to this journal a full edition of the “Le Pèlerinage de Damoiselle Sapience” and other texts from UPenn Ms Codex 660, ff. 86r–95v within the three-day timespan of the conference. The project used methods typical of crowdsourcing and drew participants from all over the world and from all different stages of their careers. After one group completed its work, the results were passed into the hands of the next. The final result—in the form of a finished manuscript edition, ready for submission to Digital Medievalist—was presented on the last day of the conference. The main purpose of this experiment was to demonstrate how the work of the transcriber and editor might be structured as a short-term digital event that relied wholly on virtual interactions with both the source materials and among collaborators. This method also reveals the positive aspects of the many challenges posed by working simultaneously, remotely, and globally
Introduction: Toward an Engaged Feminist Heritage Praxis
We advocate a feminist approach to archaeological heritage work in order to transform heritage practice and the production of archaeological knowledge. We use an engaged feminist standpoint and situate intersubjectivity and intersectionality as critical components of this practice. An engaged feminist approach to heritage work allows the discipline to consider women’s, men’s, and gender non-conforming persons’ positions in the field, to reveal their contributions, to develop critical pedagogical approaches, and to rethink forms of representation. Throughout, we emphasize the intellectual labor of women of color, queer and gender non-conforming persons, and early white feminists in archaeology
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
- …