767 research outputs found

    Stress-Activity Mapping: Physiological Responses During General Duty Police Encounters

    Get PDF
    Policing is a highly stressful and dangerous profession that involves a complex set of environmental, psychosocial, and health risks. The current study examined autonomic stress responses experienced by 64 police officers, during general duty calls for service (CFS) and interactions with the public. Advancing previous research, this study utilized GPS and detailed operational police records as objective evidence of specific activities throughout a CFS. These data were then used to map officers’ heart rate to both the phase of a call (e.g., dispatch, enroute) and incident factors (e.g., call priority, use-of-force). Furthermore, physical movement (i.e., location and inertia) was tracked and assisted in differentiating whether cardiovascular reactivity was due to physical or psychological stress. Officer characteristics, including years of service and training profiles, were examined to conduct a preliminary exploration of whether experience and relevant operational skills training impacted cardiovascular reactivity. Study results provide foundational evidence that CFS factors, specifically the phase of the call (i.e., arrival on scene, encountering a subject) and incident factors (i.e., call priority, weapons, arrest, use-of-force), influence physiologica

    Composite Fermion Wavefunctions Derived by Conformal Field Theory

    Full text link
    The Jain theory of hierarchical Hall states is reconsidered in the light of recent analyses that have found exact relations between projected Jain wavefunctions and conformal field theory correlators. We show that the underlying conformal theory is precisely given by the W-infinity minimal models introduced earlier. This theory involves a reduction of the multicomponent Abelian theory that is similar to the projection to the lowest Landau level in the Jain approach. The projection yields quasihole excitations obeying non-Abelian fractional statistics. The analysis closely parallels the bosonic conformal theory description of the Pfaffian and Read-Rezayi states.Comment: 4 pages, 1 figur

    Nonlinear saturation of electrostatic waves: mobile ions modify trapping scaling

    Full text link
    The amplitude equation for an unstable electrostatic wave in a multi-species Vlasov plasma has been derived. The dynamics of the mode amplitude ρ(t)\rho(t) is studied using an expansion in ρ\rho; in particular, in the limit γ0+\gamma\rightarrow0^+, the singularities in the expansion coefficients are analyzed to predict the asymptotic dependence of the electric field on the linear growth rate γ\gamma. Generically Ekγ5/2|E_k|\sim \gamma^{5/2}, as γ0+\gamma\rightarrow0^+, but in the limit of infinite ion mass or for instabilities in reflection-symmetric systems due to real eigenvalues the more familiar trapping scaling Ekγ2|E_k|\sim \gamma^{2} is predicted.Comment: 13 pages (Latex/RevTex), 4 postscript encapsulated figures which are included using the utility "uufiles". They should be automatically included with the text when it is downloaded. Figures also available in hard copy from the authors ([email protected]

    Lucky Imaging Adaptive Optics of the brown dwarf binary GJ569Bab

    Full text link
    The potential of combining Adaptive Optics (AO) and Lucky Imaging (LI) to achieve high precision astrometry and differential photometry in the optical is investigated by conducting observations of the close 0\farcs1 brown dwarf binary GJ569Bab. We took 50000 II-band images with our LI instrument FastCam attached to NAOMI, the 4.2-m William Herschel Telescope (WHT) AO facility. In order to extract the most of the astrometry and photometry of the GJ569Bab system we have resorted to a PSF fitting technique using the primary star GJ569A as a suitable PSF reference which exhibits an II-band magnitude of 7.78±0.037.78\pm0.03. The AO+LI observations at WHT were able to resolve the binary system GJ569Bab located at 4\farcs 92 \pm 0\farcs05 from GJ569A. We measure a separation of 98.4±1.198.4 \pm 1.1 mas and II-band magnitudes of 13.86±0.0313.86 \pm 0.03 and 14.48±0.0314.48 \pm 0.03 and IJI-J colors of 2.72±\pm0.08 and 2.83±\pm0.08 for the Ba and Bb components, respectively. Our study rules out the presence of any other companion to GJ569A down to magnitude I\sim 17 at distances larger than 1\arcsec. The IJI-J colors measured are consistent with M8.5-M9 spectral types for the Ba and Bb components. The available dynamical, photometric and spectroscopic data are consistent with a binary system with Ba being slightly (10-20%) more massive than Bb. We obtain new orbital parameters which are in good agreement with those in the literature.Comment: 13 pages, 9 figures, 7 tables, in press in MNRA

    Reorientation of Anisotropy in a Square Well Quantum Hall Sample

    Full text link
    We have measured magnetotransport at half-filled high Landau levels in a quantum well with two occupied electric subbands. We find resistivities that are {\em isotropic} in perpendicular magnetic field but become strongly {\em anisotropic} at ν\nu = 9/2 and 11/2 on tilting the field. The anisotropy appears at an in-plane field, BipB_{ip} \sim 2.5T, with the easy-current direction {\em parallel} to BipB_{ip} but rotates by 90^{\circ} at BipB_{ip} \sim 10T and points now in the same direction as in single-subband samples. This complex behavior is in quantitative agreement with theoretical calculations based on a unidirectional charge density wave state model.Comment: 4 pages, 4 figure

    Highly Anisotropic Transport in the Integer Quantum Hall Effect

    Full text link
    At very large tilt of the magnetic (B) field with respect to the plane of a two-dimensional electron system the transport in the integer quantum Hall regime at ν\nu = 4, 6, and 8 becomes strongly anisotropic. At these filling factors the usual {\em deep minima} in the magneto-resistance occur for the current flowing {\em perpendicular} to the in-plane B field direction but develop into {\em strong maxima} for the current flowing {\em parallel} to the in-plane B field. The origin of this anisotropy is unknown but resembles the recently observed anisotropy at half-filled Landau levels.Comment: 4 pages, 4 figure
    corecore