26 research outputs found

    KELT-18b: Puffy Planet, Hot Host, Probably Perturbed

    Get PDF
    We report the discovery of KELT-18b, a transiting hot Jupiter in a 2.87-day orbit around the bright ( V = 10.1), hot, F4V star BD+60 1538 (TYC 3865-1173-1). We present follow-up photometry, spectroscopy, and adaptive optics imaging that allow a detailed characterization of the system. Our preferred model fits yield a host stellar temperature of K and a mass of , situating it as one of only a handful of known transiting planets with hosts that are as hot, massive, and bright. The planet has a mass of , a radius of , and a density of , making it one of the most inflated planets known around a hot star. We argue that KELT-18b’s high temperature and low surface gravity, which yield an estimated ∼600 km atmospheric scale height, combined with its hot, bright host, make it an excellent candidate for observations aimed at atmospheric characterization. We also present evidence for a bound stellar companion at a projected separation of ∼1100 au, and speculate that it may have contributed to the strong misalignment we suspect between KELT-18\u27s spin axis and its planet’s orbital axis. The inferior conjunction time is 2457542.524998 ± 0.000416 (BJD TDB ) and the orbital period is 2.8717510 ± 0.0000029 days. We encourage Rossiter–McLaughlin measurements in the near future to confirm the suspected spin–orbit misalignment of this system

    KElt-18b: Puffy planet, hot host, probably perturbed

    Get PDF
    We report the discovery of KELT-18b, a transiting hot Jupiter in a 2.87-day orbit around the bright (V = 10.1), hot, F4V star BD+60 1538 (TYC 3865-1173-1). We present follow-up photometry, spectroscopy, and adaptive optics imaging that allow a detailed characterization of the system. Our preferred model fits yield a host stellar temperature of K and a mass of, situating it as one of only a handful of known transiting planets with hosts that are as hot, massive, and bright. The planet has a mass of, a radius of, and a density of, making it one of the most inflated planets known around a hot star. We argue that KELT-18b\u27s high temperature and low surface gravity, which yield an estimated ∼600 km atmospheric scale height, combined with its hot, bright host, make it an excellent candidate for observations aimed at atmospheric characterization. We also present evidence for a bound stellar companion at a projected separation of ∼1100 au, and speculate that it may have contributed to the strong misalignment we suspect between KELT-18\u27s spin axis and its planet\u27s orbital axis. The inferior conjunction time is 2457542.524998 ± 0.000416 (BJDTDB) and the orbital period is 2.8717510 ± 0.0000029 days. We encourage Rossiter-McLaughlin measurements in the near future to confirm the suspected spin-orbit misalignment of this system

    Recurrent KRAS mutations are early events in the development of papillary renal neoplasm with reverse polarity

    No full text
    none22siWe evaluated the clinicopathologic and molecular characteristics of mostly incidentally detected, small, papillary renal neoplasms with reverse polarity (PRNRP). The cohort comprised 50 PRNRP from 46 patients, divided into 2 groups. The clinically undetected ( T (n = 21), c.34 G > T (n = 3), c.35 G > A (n = 2), c.34 G > C (n = 2) resulting in p.Gly12Val, p. Gly12Asp, p.Gly12Cys and p.Gly12Arg, respectively. One PRNRP had a G12A/V/D complex mutation. Twenty-six PRNRP were concurrently present with other tumors of different histologic subtypes in the ipsilateral kidney; molecular testing of 8 of the latter showed wild-type KRAS gene despite the presence of KRAS mutations in 5 concurrent PRNRP. On follow up, no adverse pathologic events were seen (range 1–160 months; mean 44 months). In conclusion, the presence of KRAS mutations in small, clinically undetected PRNRP provides a unique finding to this entity and supports its being an early event in the development of these neoplasms.noneAl-Obaidy K.I.; Saleeb R.M.; Trpkov K.; Williamson S.R.; Sangoi A.R.; Nassiri M.; Hes O.; Montironi R.; Cimadamore A.; Acosta A.M.; Alruwaii Z.I.; Alkashash A.; Hassan O.; Gupta N.; Osunkoya A.O.; Sen J.D.; Baldrige L.A.; Sakr W.A.; Idrees M.T.; Eble J.N.; Grignon D.J.; Cheng L.Al-Obaidy, K. I.; Saleeb, R. M.; Trpkov, K.; Williamson, S. R.; Sangoi, A. R.; Nassiri, M.; Hes, O.; Montironi, R.; Cimadamore, A.; Acosta, A. M.; Alruwaii, Z. I.; Alkashash, A.; Hassan, O.; Gupta, N.; Osunkoya, A. O.; Sen, J. D.; Baldrige, L. A.; Sakr, W. A.; Idrees, M. T.; Eble, J. N.; Grignon, D. J.; Cheng, L
    corecore