22 research outputs found

    Time-Course Changes of Extracellular Matrix Encoding Genes Expression Level in the Spinal Cord Following Contusion Injury: A Data-Driven Approach

    Get PDF
    The involvement of the extracellular matrix (ECM) in lesion evolution and functional outcome is well recognized in spinal cord injury. Most attention has been dedicated to the "core" area of the lesion and scar formation, while only scattered reports consider ECM modification based on the temporal evolution and the segments adjacent to the lesion. In this study, we investigated the expression profile of 100 genes encoding for ECM proteins at 1, 8 and 45 days post-injury, in the spinal cord segments rostral and caudal to the lesion and in the scar segment, in a rat model. During both the active lesion phases and the lesion stabilization, we observed an asymmetric gene expression induced by the injury, with a higher regulation in the rostral segment of genes involved in ECM remodeling, adhesion and cell migration. Using bioinformatic approaches, the metalloproteases inhibitor Timp1 and the hyaluronan receptor Cd44 emerged as the hub genes at all post-lesion times. Results from the bioinformatic gene expression analysis were then confirmed at protein level by tissue analysis and by cell culture using primary astrocytes. These results indicated that ECM regulation also takes place outside of the lesion area in spinal cord injury

    Molecular mechanisms of skin wound healing in non-diabetic and diabetic mice in excision and pressure experimental wounds

    Get PDF
    Experimental models for chronic skin lesions are excision and pressure ulcer, defined as "open" and "closed" lesions, respectively, only the latter characterized by tissue hypoxia. Moreover, systemic diseases, such as diabetes mellitus, affect wound repair. Thus, models for testing new therapies should be carefully selected according to the expected targets. In this study, we present an extensive and comparative histological, immunohistochemical, and molecular characterization of these two lesions in diabetic (db/db) and non-diabetic (C57BL/6 J) mice. In db/db mice, we found significant reduction in PGP9.5-IR innervation, reduction of capillary network, and reduced expression of NGF receptors. We found an increase in VEGF receptor Kdr expression, and the PI3K-Akt signaling pathway at the core of the altered molecular network. Db/db mice with pressure ulcers showed an impairment in the molecular regulation of hypoxia-related genes (Hif1a, Flt1, and Kdr), while extracellular matrix encoding genes (Itgb3, Timp1, Fn1, Col4a1) were upregulated by hyperglycemia and lesions. Overall, the molecular analysis suggests that db/db mice have a longer inflammatory phase of the wound repair process, delaying the progression toward the proliferation and remodeling phases

    Retinoic acid receptor beta protects striatopallidal medium spiny neurons from mitochondrial dysfunction and neurodegeneration

    Get PDF
    Retinoic acid is a powerful regulator of brain development, however its postnatal functions only start to be elucidated. We show that retinoic acid receptor beta (RAR beta), is involved in neuroprotection of striatopallidal medium spiny neurons (spMSNs), the cell type affected in different neuropsychiatric disorders and particularly prone to degenerate in Huntington disease (HD). Accordingly, the number of spMSNs was reduced in the striatum of adult Rar beta(-/-) mice, which may result from mitochondrial dysfunction and neurodegeneration. Mitochondria morphology was abnormal in mutant mice whereas in cultured striatal Rar beta(-/-) neurons mitochondria displayed exacerbated depolarization, and fragmentation followed by cell death in response to glutamate or thapsigargininduced calcium increase. In vivo, Rar beta(-/-)spMSNs were also more vulnerable to the mitochondrial toxin 3-nitropropionic acid (3NP), known to induce HD symptoms in human and rodents. In contrary, an RAR beta agonist, AC261066, decreased glutamate-induced toxicity in primary striatal neurons in vitro, and diminished mitochondrial dysfunction, spMSN cell death and motor deficits induced in wild type mice by 3NP. We demonstrate that the striatopallidal pathway is compromised in Rar beta(-/-) mice and associated with HD-like motor abnormalities. Importantly, similar motor abnormalities and selective reduction of spMSNs were induced by striatal or spMSNspecific inactivation of RAR beta, further supporting a neuroprotective role of RAR beta in postnatal striatum

    A novel mutation in SPART gene causes a severe neurodevelopmental delay due to mitochondrial dysfunction with complex I impairments and altered pyruvate metabolism

    Get PDF
    Funding: Royal Society grant RG110387 (S.P.)Loss-of-function mutations in the SPART gene cause Troyer syndrome, a recessive form of spastic paraplegia resulting in muscle weakness, short stature, and cognitive defects. SPART encodes for Spartin, a protein linked to endosomal trafficking and mitochondrial membrane potential maintenance. Here, we identified with whole exome sequencing (WES) a novel frameshift mutation in the SPART gene in 2 brothers presenting an uncharacterized developmental delay and short stature. Functional characterization in an SH-SY5Y cell model shows that this mutation is associated with increased neurite outgrowth. These cells also show a marked decrease in mitochondrial complex I (NADH dehydrogenase) activity, coupled to decreased ATP synthesis and defective mitochondrial membrane potential. The cells also presented an increase in reactive oxygen species, extracellular pyruvate, and NADH levels, consistent with impaired complex I activity. In concordance with a severe mitochondrial failure, Spartin loss also led to an altered intracellular Ca2+ homeostasis that was restored after transient expression of wild-type Spartin. Our data provide for the first time a thorough assessment of Spartin loss effects, including impaired complex I activity coupled to increased extracellular pyruvate. In summary, through a WES study we assign a diagnosis of Troyer syndrome to otherwise undiagnosed patients, and by functional characterization we show that the novel mutation in SPART leads to a profound bioenergetic imbalance.PreprintPeer reviewe

    Cell death in pure-neuronal and neuron-astrocyte mixed primary culture subjected to oxygen-glucose deprivation: The contribution of poly(ADP-ribose) polymerases and caspases

    No full text
    Primary cortical neurons subjected oxygen-glucose deprivation (OGD) is an . in vitro model that mimics fundamental aspects of neonatal hypoxic-ischemic encephalopathy (HIE) and is widely used to test neuroprotective treatments. However, controversial results characterize the existing literature on the OGD model. To shed some light on the initial cell death triggers in OGD, we first investigated the contribution of glucose- or oxygen-deprivation, alone or in combination, to cell viability/death in two cell systems, i.e. pure neuronal: 98% neurons; 2% astrocytes- vs. mixed neuron/astrocytes: 50% neurons; 50% astrocytes- culture. Cell viability was evaluated biochemically (MTT, and LDH release) and morphologically by high-content screening. We first found that neuronal death triggered by OGD (3. h OGD. +. 24. h re-oxygenation) was mainly driven by glucose rather than oxygen deprivation. Astrocytes survival was not substantially affected. Caspase-3 activation was found both in neuronal and mixed neuron/astrocytes cultures, whereas PARP activation was evident only in pure neuronal cultures. To pharmacologically dissect the contribution of these pathways, we measured the effect of TIQ-A (PARP 1 inhibitor) and ZVAD-fmk (pan-caspase inhibitor), individually or in combination, on culture viability after 3. h OGD. We found that only the combination treatment exerts a significant neuroprotective effect particularly evident in pure neuronal cultures. In sum, glucose deprivation is the major cell death trigger in OGD and neurons are more sensitive to OGD than astrocytes. Both PARP and caspases are concurrently activated in pure neuronal cultures and both contribute to neuronal cell death suggesting that neuroprotective strategies may require the simultaneous inhibition of multiple death pathways to be effective

    Synthetic Thyroid Hormone Receptor-β Agonists Promote Oligodendrocyte Precursor Cell Differentiation in the Presence of Inflammatory Challenges

    No full text
    Oligodendrocytes and their precursors are the cells responsible for developmental myelination and myelin repair during adulthood. Their differentiation and maturation processes are regulated by a complex molecular machinery driven mainly by triiodothyronine (T3), the genomic active form of thyroid hormone, which binds to thyroid hormone receptors (TRs), regulating the expression of target genes. Different molecular tools have been developed to mimic T3 action in an attempt to overcome the myelin repair deficit that underlies various central nervous system pathologies. In this study, we used a well-established in vitro model of neural stem cell-derived oligodendrocyte precursor cells (OPCs) to test the effects of two compounds: the TRβ1 ligand IS25 and its pro-drug TG68. We showed that treatment with TG68 induces OPC differentiation/maturation as well as both the natural ligand and the best-known TRβ1 synthetic ligand, GC-1. We then described that, unlike T3, TG68 can fully overcome the cytokine-mediated oligodendrocyte differentiation block. In conclusion, we showed the ability of a new synthetic compound to stimulate OPC differentiation and overcome inflammation-mediated pathological conditions. Further studies will clarify whether the compound acts as a pro-drug to produce the TRβ1 ligand IS25 or if its action is mediated by secondary mechanisms such as AMPK activation

    Neural stem cells isolated from amyloid precursor protein-mutated mice for drug discovery

    No full text
    none6AIM: To develop an in vitro model based on neural stem cells derived from transgenic animals, to be used in the study of pathological mechanisms of Alzheimer's disease and for testing new molecules. METHODS: Neural stem cells (NSCs) were isolated from the subventricular zone of Wild type (Wt) and Tg2576 mice. Primary and secondary neurosphere generation was studied, analysing population doubling and the cell yield per animal. Secondary neurospheres were dissociated and plated on MCM Gel Cultrex 2D and after 6 d in vitro (DIVs) in mitogen withdrawal conditions, spontaneous differentiation was studied using specific neural markers (MAP2 and TuJ-1 for neurons, GFAP for astroglial cells and CNPase for oligodendrocytes). Gene expression pathways were analysed in secondary neurospheres, using the QIAGEN PCR array for neurogenesis, comparing the Tg2576 derived cell expression with the Wt cells. Proteins encoded by the altered genes were clustered using STRING web software. RESULTS: As revealed by 6E10 positive staining, all Tg2576 derived cells retain the expression of the human transgenic Amyloid Precursor Protein. Tg2576 derived primary neurospheres show a decrease in population doubling. Morphological analysis of differentiated NSCs reveals a decrease in MAP2- and an increase in GFAP-positive cells in Tg2576 derived cells. Analysing the branching of TuJ-1 positive cells, a clear decrease in neurite number and length is observed in Tg2576 cells. The gene expression neurogenesis pathway revealed 11 altered genes in Tg2576 NSCs compared to Wt. CONCLUSION: Tg2576 NSCs represent an appropriate AD in vitro model resembling some cellular alterations observed in vivo, both as stem and differentiated cells.noneVito Antonio Baldassarro; Giulia Lizzo; Michela Paradisi; Mercedes Fernández; Luciana Giardino; Laura CalzàVito Antonio Baldassarro; Giulia Lizzo; Michela Paradisi; Mercedes Fernández; Luciana Giardino; Laura Calz

    A Time-Course Study of the Expression Level of Synaptic Plasticity-Associated Genes in Un-Lesioned Spinal Cord and Brain Areas in a Rat Model of Spinal Cord Injury: A Bioinformatic Approach

    No full text
    “Neuroplasticity” is often evoked to explain adaptation and compensation after acute lesions of the Central Nervous System (CNS). In this study, we investigated the modification of 80 genes involved in synaptic plasticity at different times (24 h, 8 and 45 days) from the traumatic spinal cord injury (SCI), adopting a bioinformatic analysis. mRNA expression levels were analyzed in the motor cortex, basal ganglia, cerebellum and in the spinal segments rostral and caudal to the lesion. The main results are: (i) a different gene expression regulation is observed in the Spinal Cord (SC) segments rostral and caudal to the lesion; (ii) long lasting changes in the SC includes the extracellular matrix (ECM) enzymes Timp1, transcription regulators (Egr, Nr4a1), second messenger associated proteins (Gna1, Ywhaq); (iii) long-lasting changes in the Motor Cortex includes transcription regulators (Cebpd), neurotransmitters/neuromodulators and receptors (Cnr1, Gria1, Nos1), growth factors and related receptors (Igf1, Ntf3, Ntrk2), second messenger associated proteins (Mapk1); long lasting changes in Basal Ganglia and Cerebellum include ECM protein (Reln), growth factors (Ngf, Bdnf), transcription regulators (Egr, Cebpd), neurotransmitter receptors (Grin2c). These data suggest the molecular mapping as a useful tool to investigate the brain and SC reorganization after SCI

    Study on NGF and VEGF during the Equine Perinatal Period—Part 1: Healthy Foals Born from Normal Pregnancy and Parturition

    No full text
    The importance of trophic factors, such as nerve growth factor (NGF), vascular endothelial growth factor (VEGF), and brain-derived neurotrophic factor (BDNF) during the perinatal period, is now emerging. Through their functional activities of neurogenesis and angiogenesis, they play a key role in the final maturation of the nervous and vascular systems. The present study aims to: (i) evaluate the NGF and VEGF levels obtained at parturition from the mare, foal and umbilical cord vein plasma, as well as in amniotic fluid; (ii) evaluate NGF and VEGF content in the plasma of healthy foals during the first 72 h of life (T0, T24 and T72); (iii) evaluate NGF and VEGF levels at parturition in relation to the selected mares’ and foals’ clinical parameters; (iv) evaluate the relationship between the two trophic factors and the thyroid hormone levels (TT3 and TT4) in the first 72 h of life; (v) assess mRNA expression of NGF, VEGF and BDNF and their cell surface receptors in the placenta. Fourteen Standardbred healthy foals born from mares with normal pregnancies and parturitions were included in the study. The dosage of NGF and VEGF levels was performed using commercial ELISA kits, whereas NGF, VEGF and BDNF placental gene expression was performed using semi-quantitative real-time PCR. In foal plasma, both NGF and VEGF levels decreased significantly over time, from T0 to T24 (p = 0.0066 for NGF; p p = 0.0179 for NGF; p = 0.0016 for VEGF). In foal serum, TT3 levels increased significantly over time from T0 to T24 (p = 0.0058) and from T0 to T72 (p = 0.0013), whereas TT4 levels decreased significantly over time from T0 to T24 (p = 0.0201) and from T0 to T72 (p p = 0.0115; r = 0.2862). A positive correlation was found between NGF levels in the foal plasma at T0 and lactate (p = 0.0359; r = 0.5634) as well as between VEGF levels in the foal plasma at T0 and creatine kinase (p = 0.0459; r = 0.5407). VEGF was expressed in all fetal membranes, whereas NGF and its receptors were not expressed in the amnion. The close relationship between the two trophic factors in foal plasma over time and their fine expression in placental tissues appear to be key regulators of fetal development and adaptation to extra-uterine life
    corecore