604 research outputs found

    Ian L. McHarg. Projectar amb la naturalesa

    Get PDF

    EvoluciĂł del concepte de tractament dels residus.

    Get PDF

    Saharan dust deposition may affect phytoplankton growth in the mediterranean sea at ecological time scales

    Get PDF
    The surface waters of the Mediterranean Sea are extremely poor in the nutrients necessary for plankton growth. At the same time, the Mediterranean Sea borders with the largest and most active desert areas in the world and the atmosphere over the basin is subject to frequent injections of mineral dust particles. We describe statistical correlations between dust deposition over the Mediterranean Sea and surface chlorophyll concentrations at ecological time scales. Aerosol deposition of Saharan origin may explain 1 to 10% (average 5%) of seasonally detrended chlorophyll variability in the low nutrient-low chlorophyll Mediterranean. Most of the statistically significant correlations are positive with main effects in spring over the Eastern and Central Mediterranean, conforming to a view of dust events fueling needed nutrients to the planktonic community. Some areas show negative effects of dust deposition on chlorophyll, coinciding with regions under a large influence of aerosols from European origin. The influence of dust deposition on chlorophyll dynamics may become larger in future scenarios of increased aridity and shallowing of the mixed layerPostprint (published version

    Ecoprocesses. A need and a requirement

    Get PDF
    Cleaner production is a means of applying in a continuous manner a preventive and integrated environmental strategy aimed at processes and product

    Relative humidity vertical profiling using lidar-based synergistic methods in the framework of the Hygra-CD campaign

    Get PDF
    Accurate continuous measurements of relative hu- midity (RH) vertical profiles in the lower troposphere have become a significant scientific challenge. In recent years a synergy of various ground-based remote sensing instru- ments have been successfully used for RH vertical profil- ing, which has resulted in the improvement of spatial reso- lution and, in some cases, of the accuracy of the measure- ment. Some studies have also suggested the use of high- resolution model simulations as input datasets into RH ver- tical profiling techniques. In this paper we apply two syn- ergetic methods for RH profiling, including the synergy of lidar with a microwave radiometer and high-resolution at- mospheric modeling. The two methods are employed for RH retrieval between 100 and 6000 m with increased spatial res- olution, based on datasets from the HygrA-CD (Hygroscopic Aerosols to Cloud Droplets) campaign conducted in Athens, Greece from May to June 2014. RH profiles from synergetic methods are then compared with those retrieved using single instruments or as simulated by high-resolution models. Our proposed technique for RH profiling provides improved sta- tistical agreement with reference to radiosoundings by 27 % when the lidar–radiometer (in comparison with radiometer measurements) approach is used and by 15 % when a lidar model is used (in comparison with WRF-model simulations). Mean uncertainty of RH due to temperature bias in RH pro- filing was ~ 4 . 34 % for the lidar–radiometer and ~ 1 . 22 % for the lidar–model methods. However, maximum uncer- tainty in RH retrievals due to temperature bias showed that lidar-model method is more reliable at heights greater than 2000 m. Overall, our results have demonstrated the capabil- ity of both combined methods for daytime measurements in heights between 100 and 6000 m when lidar–radiometer or lidar–WRF combined datasets are available.Peer ReviewedPostprint (author's final draft

    2005-2017 Ozone trends and potential benefits of local measures as deduced from air quality measurements in the north of the Barcelona metropolitan area

    Get PDF
    We analyzed 2005–2017 data sets on ozone (O3) concentrations in an area (the Vic Plain) frequently affected by the atmospheric plume northward transport of the Barcelona metropolitan area (BMA), the atmospheric basin of Spain recording the highest number of exceedances of the hourly O3 information threshold (180¿µg¿m-3). We aimed at evaluating the potential benefits of implementing local-BMA short-term measures to abate emissions of precursors. To this end, we analyzed in detail spatial and time variations of concentration of O3 and nitrogen oxides (NO and NO2, including OMI remote sensing data for the latter). Subsequently, a sensitivity analysis is done with the air quality (AQ) data to evaluate potential O3 reductions in the north of the BMA on Sundays compared with weekdays as a consequence of the reduction in regional emissions of precursors. The results showed a generalized decreasing trend for regional background O3 as well as the well-known increase in urban O3 and higher urban NO decreasing slopes compared with those of NO2. The most intensive O3 episodes in the Vic Plain are caused by (i) a relatively high regional background O3 (due to a mix of continental, hemispheric–tropospheric and stratospheric contributions); by (ii) intensive surface fumigation from mid-troposphere high O3 upper layers arising from the concatenation of the vertical recirculation of air masses; but also by (iii) an important O3 contribution from the northward transport/channeling of the pollution plume from the BMA. The high relevance of the local-daily O3 contribution during the most intense pollution episodes is clearly supported by the O3 (surface concentration) and NO2 (OMI data) data analysis. A maximum decrease potential (by applying short-term measures to abate emissions of O3 precursors) of 49¿µg¿O3¿m-3 (32¿%) of the average diurnal concentrations was determined. Structurally implemented measures, instead of episodically, could result in important additional O3 decreases because not only the local O3 coming from the BMA plume would be reduced, but also the recirculated O3 and thus the intensity of O3 fumigation in the plain. Therefore, it is highly probable that both structural and episodic measures to abate NOx and volatile organic compound (VOC) emissions in the BMA would result in evident reductions of O3 in the Vic PlainPeer ReviewedPostprint (author's final draft

    Effect of terrain relief on dust transport over complex terrains in West Asia

    Get PDF
    This work investigates the impact of orography on dust transport using the multi-scale NMMB/BSC-Dust model. For this purpose, two model simulations at horizontal resolutions of 0.03Âş x 0.03Âş (Low-resolution; LR) and 0.3Âş x 0.3Âş (High-resolution; HR) are performed and analysed covering two intense dust storms that occurred in West Asia in March 2012. Differences between both simulations emerge when the dust storms reach the south and west Arabian Peninsula where its complex topography affected meteorology and dust fields in many ways. The HR simulation is better than the LR simulation at reproducing the topography and its topographic effects on meteorology, such as developing orographic clouds, wind speed bias reduction under the dust flows (larger than 5 m/s) and more accurate wind directions, as well as on dust fields, such as a more realistic representation of dust channeling/blocking. Consequently, it improves dust forecasts in the vicinity of complex terrains

    Trends and patterns of air quality in Santa Cruz de Tenerife (Canary Islands) in the period 2011–2015

    Get PDF
    Air quality trends and patterns in the coastal city of Santa Cruz de Tenerife (Canary Islands, Spain) for the period 2011–2015 were analyzed. The orographic and meteorological characteristics, the proximity to the African continent, and the influence of the Azores anticyclone in combination with the anthropogenic (oil refinery, road/maritime traffic) and natural emissions create specific dispersion conditions. SO2, NO2, PM10, PM2.5, and O3 pollutants were assessed. The refinery was the primary source of SO2; EU hourly and daily average limit values were exceeded during 2011 and alert thresholds were reached in 2011 and 2012. WHO daily mean guideline was occasionally exceeded. Annual averages in the three stations that registered the highest concentrations in 2011 and 2012 were between 9.3 and 20.4 µg/m3. The spatial analysis of SO2 concentrations with respect to prevailing winds corroborates a clear influence of the refinery to the SO2 levels. In 2014 and 2015, the refinery did not operate and the concentrations fell abruptly to background levels of 2.5–7.1 µg/m3 far below from WHO AQG. NO2 EU limit values, as well as WHO AQG for the period 2011–2015, were not exceeded. The progressive dieselization of the vehicle fleet caused an increment on NO2 annual mean concentrations (from 2011 to 2015) measured at two stations close to busy roads 25 to 31 µg/m3 (+21%) and 27 to 35 µg/m3 (+29%). NOx daily and weekly cycles (working days and weekends) were characterized. An anti-correlation was found between NOx and O3, showing that O3 is titrated by locally emitted NO. Higher O3 concentrations were reported because less NOx emitted during the weekends showing a clear weekend effect. Saharan dust intrusions have a significant impact on PM levels. After subtracting natural sources contribution, none of the stations reached the EU maximum 35 yearly exceedances of daily means despite seldom exceedances at some stations. None of the stations exceeded the annual mean EU limit values; however, many stations exceeded the annual mean WHO AQG. Observed PM10 annual average concentrations in all the stations fluctuated between 10.1 and 35.3 µg/m3, where background concentrations were 6.5–24.4 µg/m3 and natural contributions: 4.2–9.1 µg/m3. No PM10 temporal trends were identified during the period except for an effect of washout due to the rain: concentrations were lower in 2013 and 2014 (the most rainy years of the period). None of the stations reached the PM2.5 annual mean EU 2015 limit value. However, almost all the stations registered daily mean WHO AQG exceedances. During 2015, PM2.5 concentrations were higher than the previous years (2015, 8.8–12.3 µg/m3; 2011–2014, 3.7–9.6 µg/m3). O3 complied with EU target values; stricter WHO AQG were sometimes exceeded in all the stations for the whole time periodPeer ReviewedPostprint (published version
    • …
    corecore