493 research outputs found
Improving the Bank Recovery Process: Empirical Evidence for the Italian Banking System
We develop an empirical test with which we aim to reveal the conditions of Italian listed banks over the period 2005-2016 in terms of their ability to survive potential extreme losses and the circumstances under which the regulator should intervene (Goodhart and Segoviano, 2015). In particular, we calculate the probability of distress of each bank by applying the Merton model; then we quantify the potential losses according to the Vasicek (2002) approach. The probabilities of distress are then transformed into distances to default (DD), and the corresponding cumulative distribution of banks is used to identify the Type I error (not intervening to shut down operations of a bank that would subsequently fail) and Type II error (shutting down a bank that would survive on its own). The \u201coptimal\u201d recovery trigger should minimise the combination of the two types of error, identifying an \u201coptimal\u201d amount of DD as a criterion for early regulatory intervention
GSK2801 Reverses Paclitaxel Resistance in Anaplastic Thyroid Cancer Cell Lines through MYCN Downregulation
Anaplastic thyroid cancer (ATC) is a very rare, but extremely aggressive form of thyroid malignancy, responsible for the highest mortality rate registered for thyroid cancer. Treatment with taxanes (such as paclitaxel) is an important approach in counteracting ATC or slowing its progression in tumors without known genetic aberrations or those which are unresponsive to other treatments. Unfortunately, resistance often develops and, for this reason, new therapies that overcome taxane resistance are needed. In this study, effects of inhibition of several bromodomain proteins in paclitaxel-resistant ATC cell lines were investigated. GSK2801, a specific inhibitor of BAZ2A, BAZ2B and BRD9, was effective in resensitizing cells to paclitaxel. In fact, when used in combination with paclitaxel, it was able to reduce cell viability, block the ability to form colonies in an anchor-independent manner, and strongly decrease cell motility. After RNA-seq following treatment with GSK2801, we focused our attention on MYCN. Based on the hypothesis that MYCN was a major downstream player in the biological effects of GSK2801, we tested a specific inhibitor, VPC-70619, which showed effective biological effects when used in association with paclitaxel. This suggests that the functional deficiency of MYCN determines a partial resensitization of the cells examined and, ultimately, that a substantial part of the effect of GSK2801 results from inhibition of MYCN expression
Unfolding-based Diagnosis of Systems with an Evolving Topology
We propose a framework for model-based diagnosis of systems with mobility and variable topologies, modelled as graph transformation systems. Generally speaking, model-based diagnosis is aimed at constructing explanations of observed faulty behaviours on the basis of a given model of the system. Since the number of possible explanations may be huge, we exploit the unfolding as a compact data structure to store them, along the lines of previous work dealing with Petri net models. Given a model of a system and an observation, the explanations can be constructed by unfolding the model constrained by the observation, and then removing incomplete explanations in a pruning phase. The theory is formalised in a general categorical setting: constraining the system by the observation corresponds to taking a product in the chosen category of graph grammars, so that the correctness of the procedure can be proved by using the fact that the unfolding is a right adjoint and thus it preserves products. The theory should hence be easily applicable to a wide class of system models, including graph grammars and Petri nets
Dihydrotanshinone I exhibits antitumor effects via β-catenin downregulation in papillary thyroid cancer cell lines
Thyroid cancer is the most common endocrine carcinoma and, among its different subtypes, the papillary subtype (PTC) is the most frequent. Generally, PTCs are well differentiated, but a minor percentage of PTCs are characterized by a worse prognosis and more aggressive behavior. Phytochemicals, naturally found in plant products, represent a heterogeneous group of bioactive compounds that can interfere with cell proliferation and the regulation of the cell cycle, taking part in multiple signaling pathways that are often disrupted in tumor initiation, proliferation, and progression. In this work, we focused on 15,16-dihydrotanshinone I (DHT), a tanshinone isolated from Salvia miltiorrhiza Bunge (Danshen). We first evaluated DHT biological effect on PTC cells regarding cell viability, colony formation ability, and migration capacity. All of these parameters were downregulated by DHT treatment. We then investigated gene expression changes after DHT treatment by performing RNA-seq. The analysis revealed that DHT significantly reduced the Wnt signaling pathway, which plays a role in various diseases, including cancer. Finally, we demonstrate that DHT treatment decreases protein levels of β-catenin, a final effector of canonical Wnt signaling pathway. Overall, our data suggest a possible use of this nutraceutical as an adjuvant in the treatment of aggressive papillary thyroid carcinoma
Role of m6A RNA Methylation in Thyroid Cancer Cell Lines
N6-methyladenosine (m6A) is the most abundant internal modification of RNA in eukaryotic cells, and, in recent years, it has gained increasing attention. A good amount of data support the involvement of m6A modification in tumorigenesis, tumor progression, and metastatic dissemination. However, the role of this RNA modification in thyroid cancer still remains poorly investigated. In this study, m6A-related RNA methylation profiles are compared between a normal thyroid cell line and different thyroid cancer cell lines. With this approach, it was possible to identify the different patterns of m6A modification in different thyroid cancer models. Furthermore, by silencing METTL3, which is the main player in the RNA methylation machinery, it was possible to evaluate the impact of m6A modification on gene expression in an anaplastic thyroid cancer model. This experimental approach allowed us to identify DDI2 as a gene specifically controlled by the m6A modification in anaplastic thyroid cancer cell lines. Altogether, these data are a proof of concept that RNA methylation widely occurs in thyroid cancer cell models and open a way forward in the search for new molecular patterns for diagnostic discrimination between benign and malignant lesions
Aids and surgery
HIV constitutes one of the most difficult challenges facing the healthcare profession today. It is estimated that HIV infects over 40 million people in the world and 14 million have died from the disease so far. The objective of the study was to evaluate the outcome of treatment of HIV-related surgical conditions, estimating the morbidity and mortality of surgical intervention cross infection risks to surgical equipes and analysing preventive strategies to HIV perioperative transmission
Modeling with history-dependent Petri nets
Most information systems that are driven by process models (e.g., workflow management systems) record events in event logs, also known as transaction logs or audit trails. We consider processes that not only keep track of their history in a log, but also make decisions based on this log. Extending our previous work on history-dependent Petri nets we propose and evaluate a methodology for modelling processes by such nets and show how history-dependent nets can combine modelling comfort with analysability
- …