

Modeling with history-dependent Petri nets

Citation for published version (APA):
Hee, van, K. M., Serebrenik, A., Sidorova, N., Voorhoeve, M., & Werf, van der, J. M. E. M. (2007). Modeling with
history-dependent Petri nets. In G. Alonso, P. Dadam, & M. Rosemann (Eds.), Proceedings of the 5th
International Conference on Business Process Management (BPM 2007) 24-28 September 2007, Brisbane,
Australia (pp. 320-327). (Lecture Notes in Computer Science; Vol. 4714). Springer. https://doi.org/10.1007/978-
3-540-75183-0_23

DOI:
10.1007/978-3-540-75183-0_23

Document status and date:
Published: 01/01/2007

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1007/978-3-540-75183-0_23
https://doi.org/10.1007/978-3-540-75183-0_23
https://doi.org/10.1007/978-3-540-75183-0_23
https://research.tue.nl/en/publications/381cbc20-e167-4108-82a1-0ce19de75bf6

Modelling with History-Dependent Petri Nets

Kees van Hee, Alexander Serebrenik, Natalia Sidorova,
Marc Voorhoeve, and Jan Martijn van der Werf

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{k.m.v.hee, a.serebrenik, n.sidorova,
m.voorhoeve, j.m.e.m.v.d.werf}@tue.nl

Abstract. Most information systems that are driven by process models
(e.g., workflow management systems) record events in event logs, also
known as transaction logs or audit trails. We consider processes that not
only keep track of their history in a log, but also make decisions based
on this log. Extending our previous work on history-dependent Petri
nets we propose and evaluate a methodology for modelling processes by
such nets and show how history-dependent nets can combine modelling
comfort with analysability.

1 Introduction and a Motivating Example

Modern enterprise information systems commonly record information on the
ongoing processes as series of events, known as logs. Such information might be
useful to ensure quality of the processes or of the software, or might even form a
legal conformance requirement. Moreover, numerous business processes involve
decision making based on previously observed events. For instance, medication
should not be ministered if an allergic reaction to a similar medication has been
observed in the past.

In classical Petri nets, commonly used to model business processes, the en-
abling of a transition depends only on the availability of tokens in the input
places of the transition. In our previous work we introduced history-dependent
nets extending the classical model by recording the history of the process and
evaluating transition guards with respect to the history [6]. One of the major ad-
vantages of history-dependent nets consists in separating the process information
from additional constraints imposed to guarantee certain desirable properties of
the design. Therefore, the resulting nets are more readable. To illustrate this
point consider the following well-known example.

Example 1. The model [5,7] consists of a circular unidirectional railway track of
seven sections and two trains a and b. Safety requires that two adjacent sections
are never occupied by more than one train. Intuitively, we would like to model
the railway track as a set of seven places corresponding to sections, and seven

G. Alonso, P. Dadam, and M. Rosemann (Eds.): BPM 2007, LNCS 4714, pp. 320–327, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Modelling with History-Dependent Petri Nets 321

(a) As a history-dependent
net

(b) As a classical Petri net [5]

Fig. 1. Simple railway example

transitions corresponding to movements of a train from one section to another.
Trains themselves are then represented by tokens (see Figure 1(a)).

Being a classical Petri net, this model, however, does not respect the safety
requirement stated. Figure 1(b) presents the original solution as proposed in [5].
For i = 0, . . . , 6 and z = a, b, Uiz means that section i is occupied by train z,
and Vi means that the sections i and (i + 1) mod 7 are vacant. Observe that the
sole purpose of Uib and Vi is to impose the safety restrictions. We believe that
understanding such a model and designing it is a difficult task for a layman.

To ease the modeling task, we use guards stating that the transition following
Ui fires if Ui has exactly one token, while U(i+1) mod 7 and U(i+2) mod 7 are
empty. It should be noted that Ui has exactly one token if and only if the initial
number of tokens at Ui together with the number of firings of the preceding
transition exceeds by one the number of firings of the subsequent transition.
Similarly, Ui is empty if and only if the initial number of tokens at Ui together
with the number of firings of the preceding transition is equal to the number
of firings of the subsequent transition. Hence, the guards can be constructed by
using the information stored in the history, which is the sequence of firings till
the current moment together with the initial marking.

Unlike the original solution, our approach allows to separate the process in-
formation (trains move along the sections of a circular rail) from the mechanism
used to impose the safety requirements (additional transitions and places in
Figure 1(b)).

Clearly, the same history-dependent Petri net can be modelled in many different
ways. As one extreme, one can consider expressing all dependencies by means of
places and transitions. This approach is illustrated by an overly-complex Petri
net on Figure 1(b). As another extreme, one can put the entire information

322 K. van Hee et al.

Fig. 2. Railway example: eliminating the guards

in transition guards, i.e., opt for a history-dependent net with just one place,
connected to all transitions. We refer to such net as so-called “flower” net. Such
a net without transition guards can execute transitions in any order and with
history-based guards we can restrict this behavior the way we like. The best
solution, in our view, is between both extremes: the basic process steps are ex-
pressed in the structure of the net, while additional constraints on the execution
are imposed by transition guards.

An important aspect of history-dependent nets is the language for expressing
transition guards. We developed a language that is powerful enough to express
inhibitor arcs, which means that we have a Turing-complete formalism. We con-
sidered two subsets of this language, namely the counting formulae and the
next-free LTL and showed that by restricting the language to these subsets we
can automatically transform history-dependent nets into classical Petri nets (in
some cases with inhibitor arcs). Figure 2 shows the net obtained by translating
the history-dependent Petri net from Figure 1(a). These nets have more places
and transitions than corresponding history-dependent nets and therefore more
difficult to read, but they allow for classical analysis methods and for model
checking.

In this paper we consider global history, which means that any transition may
have a guard based on the total history of the net. Access to global history is
realistic in many situations, for instance in health care, where all care providers
have access to an electronic patient record, or in highly integrated supply chains.
The focus of this paper is on the methodology of using history-dependent nets
for modelling and analysis of business processes.

The remainder of the paper is organized as follows. In section 2 we describe
the methodology for modeling and analysis of history-based nets. In Section 3
we discuss a example from juridical practice. Finally, we review the related work
and conclude the paper.

Modelling with History-Dependent Petri Nets 323

2 Methodology

In this section we describe our approach to modeling with history-dependent
nets. We present two different methodologies applicable depending on the project
intake: modelling from scratch or re-engineering a data-centered model. A mod-
eling methodology should be seen as a set of guidelines rather than a rigid
algorithm.

2.1 Modelling from Scratch

In this subsection we assume that modelling is done from scratch, i.e. a new
information system is to be developed. The first step in modeling consists in
determining the stages in the life cycle of the objects that play a role in the
system. For instance, in Example 1 the objects are trains and the stages are
railway tracks. In a hospital care model the objects are patients and the stages
can be “blood sample being analysed” or “on medication”. Observe that in this
case, an object (patient) can be in different stages at the same time: the patient
can be X-rayed and at the same time a blood sample can be tested. In general,
non-experts should be able to understand what are the objects and what are
the stages. In Petri nets the objects are represented by tokens while the stages
are modelled as places. It should be noted that a direct attempt to model the
process as a Petri net will typically result in places representing both process
stages and artificial mechanisms needed to express such constructs as choice.

The second step aims at the events that cause the change from one stage to
another. In Petri nets these events are modeled as transitions. For example, in the
patient care process the transition from the X-ray stage to the examination stage
may be taken only if the blood test stage has been completed. Upon completing
this step one usually has a process model that allows too much behavior, so
many occurrence sequences allowed in the model are disallowed in practice.

So the third step consists in restricting the behaviour of the model constructed
so far by means of guards on the existing transitions. These guards dependent
solely on events happened in the past, i.e., transition firings, event occurrence
time and data involved. For instance, the choice of a medication can depend on
an evolution of blood pressure as observed in recent measurements. To ensure
correctness of the specified behaviour we often have global constraints, such as in
the railway case where it is forbidden that two trains are in places with a distance
smaller than two. Based on these global constraints the model designer should
formulate history-dependent guards restricting firings of individual transitions.

Finally, the fourth step aims at assessing correctness of the model, e.g., check-
ing whether the constraints are implied by the guards. To this end we make use
of the transformations to classical (inhibitor) Petri nets.

2.2 Modelling from an Existing Data-Centered Model

The four steps of the methodology described in Section 2.1 are not applicable if
the development starts from a legacy information system. A legacy information

324 K. van Hee et al.

Fig. 3. Active rules as a history-dependent net

system is typically database-centered. Process information is expressed by means
of active rules [9] that should ensure global constraints [3]. Unfortunately, it
is a commonly recognised fact that implicit relations between the rules and
unpredictable (non-deterministic) behaviour can jeopardise maintainability of a
system. Therefore, we propose an alternative approach, deriving a history based
net from an active database.

The first step consists in listing all possible basic actions. To illustrate our
approach we consider two rules: (1) if the updated sales figure exceed ten units,
the bonus of the salesperson is increased; (2) if a salesperson has obtained three
bonuses, her salary is increased. In this particular case we have only one basic
action, namely, sell. We construct the flower net using these basic actions.

The second step is constructing a windmill net based on the place of the
previously constructed flower net. Every vane represents a rule, i.e., consists of a
linear Petri net formed by an event and a series of actions (Figure 3). Condition
acts as a part of a guard of the transition representing the triggering event.
Observe, however, that every event can be handled only once. Therefore, the
guard needs to count a number of occurrences of the corresponding action after
the transition represented by the last action of the rule has been fired for the
last time. Therefore, guard-on-sales is #�last(update bonuses){sale} > 10. The
guard corresponding to the second rule can be written in a similar way.

3 Example: The “Supply Chain” of Criminal Justice

To illustrate the advantages of history-dependent nets we consider a simplified
example of a process of criminal justice. In this process four parties are involved.
They form a so-called “supply chain”. The participating parties are the police
department, the prosecutor’s office, the court house and the prison.

At the first stage a person is called “free” and is presumed innocent. If the
person is suspected of committing a crime, the police department will try to
arrest the suspect, charge him with the crime and either let him go free (with
some restrictions like taking his passport), if the suspect is not dangerous and
there is no escape risk, or put him in custody, otherwise. Next, the prosecutor’s
office interrogates the suspect and the witnesses, and, upon the results of the

Modelling with History-Dependent Petri Nets 325

Fig. 4. Criminal justice

interrogation, decides either to drop the charges (in which case the suspect is
either released from the custody or his freedom is restored) or to proceed with
the charges leading to an indictment.

326 K. van Hee et al.

The process of the court house involves deciding whether the suspect is guilty
and what kind of punishment should be carried out. Depending on the court’s
decision, the suspect or his attorney can decide to submit an appeal. In this
case the process is repeated. If the suspect has been convicted and no appeal
has been submitted, he is imprisoned. During his stay at the prison the convict
can apply for a sentence reduction. Depending on the court decision, the person
might need to undergo a special treatment upon servicing the sentence. If no
such treatment is needed or the treatment has been done, the person is freed
and the entire process restarts.

Similarly to Example 1 we make a clear separation between the four basic
parts of the process presented in Figure 4 and additional constraints existing
between the steps of each part and between the parts. To model these and
similar constraints we use the guards, which are expressions over the history.
The following table illustrates a number of constraints and their formalisation
as formulae of our history logic [6]. (Note that λ(e) denotes the label of event e
from the history log.)

Constraint Transition Guard
Both the prosecutor and
the sentenced may sub-
mit an appeal once af-
ter the first court session
and once after the sec-
ond court session. Appeal
should be submitted be-
fore the time out.

appeal

#�last({registration}){court
session} ≤ 2

∧∀�last({court session})u :
¬(λ(u) ∈ {time out , appeal})

∧∃�last({court session})v :
λ(v) ∈ {appeal sentenced ,

appeal persecutor}
A prisoner may apply
only three times for reduc-
tion of punishment and if
the application is granted
once, no further requests
are allowed. If a lifelong
sentence has been pro-
claimed no requests are
possible.

request
for
sentence
reduction

#�last({court session}){lifelong} = 0
∧#�last({court session}){request

for sentence reduction} ≤ 2
∧#�last({court session}){granted} = 0

If somebody has a life-
long sentence the sentence
served transition may not
fire.

sentence
served #�last({court session}){lifelong} = 0

4 Conclusions and Related Work

In this paper we have presented a modelling methodology based on history-
dependent nets. We have seen that history-dependent nets improve the mod-
elling comfort by allowing a clear separation between the graphically represented

Modelling with History-Dependent Petri Nets 327

process information on the one hand, and the logically represented information
on the additional constraints on the other. Moreover, in many practical cases
history-dependent nets can be automatically translated to bisimilar classical
Petri nets, which accounts for their analysability and verifiability.

Histories and related notions such as event systems [10] and pomsets [4,2] have
been used in the past to provide causality-preserving semantics for Petri nets.
Baldan et al. [1] use two different notions of history. Unlike our approach, none of
these works aims at restricting the firings by means of history-dependent guards.
History-dependent automata [8] extend states and transitions of an automaton
with sets of local names: each transition can refer to the names associated to
its source state but can also generate new names which can then appear in the
destination state. This notion of history implies that one cannot refer to firings
of other transitions but by means of shared names. We believe that the ability
to express dependencies on previous firings explicitly is the principal advantage
of our approach.

References

1. Baldan, P., Busi, N., Corradini, A., Pinna, G.M.: Domain and event structure
semantics for Petri nets with read and inhibitor arcs. Theoretical Computer Sci-
ence 323(1-3), 129–189 (2004)

2. Best, E., Devillers, R.R.: Sequential and concurrent behaviour in petri net theory.
Theoretical Computer Science 55(1), 87–136 (1987)

3. Ceri, S., Widom, J.: Deriving production rules for constraint maintainance. In: 16th
International Conference on Very Large Data Bases, August 13-16, 1990, Brisbane,
Queensland, Australia, pp. 566–577 (1990)

4. Goltz, U., Reisig, W.: The non-sequential behavior of Petri nets. Information and
Control 57(2/3), 125–147 (1983)

5. Hartmann, J.G.: Predicate/transition nets. In: Advances in Petri Nets, pp. 207–247
(1986)

6. van Hee, K.M., Serebrenik, A., Sidorova, N., van der Aalst, W.M.P.: History-
dependent Petri nets. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007, Springer,
Heidelberg (2007)

7. Junttila, T.A.: New canonical representative marking algorithms for
place/transition-nets. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004.
LNCS, vol. 3099, pp. 258–277. Springer, Heidelberg (2004)

8. Montanari, U., Pistore, M.: History-dependent automata: An introduction. In:
SFM, pp. 1–28 (2005)

9. Widom, J., Ceri, S. (eds.): Active Database Systems: Triggers and Rules For Ad-
vanced Database Processing. Morgan Kaufmann, San Francisco (1996)

10. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
Advances in Petri Nets. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987)

	Modelling with History-Dependent Petri Nets
	Introduction and a Motivating Example
	Methodology
	Modelling from Scratch
	Modelling from an Existing Data-Centered Model

	Example: The ``Supply Chain'' of Criminal Justice
	Conclusions and Related Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

