19 research outputs found

    Loss of ap4s1 in zebrafish leads to neurodevelopmental defects resembling spastic paraplegia 52.

    Get PDF
    Autosomal recessive spastic paraplegia 52 is caused by biallelic mutations in AP4S1 which encodes a subunit of the adaptor protein complex 4 (AP-4). Using next-generation sequencing, we identified three novel unrelated SPG52 patients from a cohort of patients with cerebral palsy. The discovered variants in AP4S1 lead to reduced AP-4 complex formation in patient-derived fibroblasts. To further understand the role of AP4S1 in neuronal development and homeostasis, we engineered the first zebrafish model of AP-4 deficiency using morpholino-mediated knockdown of ap4s1. In this model, we discovered several phenotypes mimicking SPG52, including altered CNS development, locomotor deficits, and abnormal neuronal excitability

    Next-generation sequencing approach to hyperCKemia: A 2-year cohort study

    Get PDF
    Next-generation sequencing (NGS) was applied in molecularly undiagnosed asymptomatic or paucisymptomatic hyperCKemia to investigate whether this technique might allow detection of the genetic basis of the condition

    Congenital myopathies: Clinical phenotypes and new diagnostic tools

    Get PDF
    Congenital myopathies are a group of genetic muscle disorders characterized clinically by hypotonia and weakness, usually from birth, and a static or slowly progressive clinical course. Historically, congenital myopathies have been classified on the basis of major morphological features seen on muscle biopsy. However, different genes have now been identified as associated with the various phenotypic and histological expressions of these disorders, and in recent years, because of their unexpectedly wide genetic and clinical heterogeneity, next-generation sequencing has increasingly been used for their diagnosis. We reviewed clinical and genetic forms of congenital myopathy and defined possible strategies to improve cost-effectiveness in histological and imaging diagnosis

    Obsessions with Retrieving the Past

    No full text
    ‘Obsessions with Retrieving the Past’, discussion presented at the symposium Counter-Archive, ICI Berlin, 29–30 April 2021, video recording, mp4, 38:56 <https://doi.org/10.25620/e210429_14

    Automatic Recognition of Ragged Red Fibers in Muscle Biopsy from Patients with Mitochondrial Disorders

    No full text
    Mitochondrial dysfunction is considered to be a major cause of primary mitochondrial myopathy in children and adults, as reduced mitochondrial respiration and morphological changes such as ragged red fibers (RRFs) are observed in muscle biopsies. However, it is also possible to hypothesize the role of mitochondrial dysfunction in aging muscle or in secondary mitochondrial dysfunctions. The recognition of true histological patterns of mitochondrial myopathy can avoid unnecessary genetic investigations. The aim of our study was to develop and validate machine-learning methods for RRF detection in light microscopy images of skeletal muscle tissue. We used image sets of 489 color images captured from representative areas of Gomori’s trichrome-stained tissue retrieved from light microscopy images at a 20× magnification. We compared the performance of random forest, gradient boosting machine, and support vector machine classifiers. Our results suggested that the advent of scanning technologies, combined with the development of machine-learning models for image classification, make neuromuscular disorders’ automated diagnostic systems a concrete possibility

    Elevated serum creatine kinase and small cerebellum prompt diagnosis of congenital muscular dystrophy due to FKRP mutations

    No full text
    Fukutin-related protein (FKRP) is a putative glycosyltransferase that mediate O-linked glycosylation of the α-dystroglycan. Mutations in the FKRP gene cause a spectrum of diseases ranging from a limb girdle muscular dystrophy 2I (LGMD2I), to severe Walker-Warburg or muscle-eye-brain forms and a congenital muscular dystrophy (with or without mental retardation) termed MDC1C. This article reports on a Moroccan infant who presented at birth with moderate floppiness, high serum creatine kinase (CK) levels, and brain ultrasonograph suggestive of widening of the posterior fossa. Muscle biopsy displayed moderate dystrophic pattern with complete absence of α-distroglycan and genetic studies identified a homozygous missense variant in FKRP. Mutations in FKRP should be looked for in forms of neonatal-onset hyperCKaemia with floppiness and small cerebellum. © The Author(s) 2013

    Elevated Serum Creatine Kinase and Small Cerebellum Prompt Diagnosis of Congenital Muscular Dystrophy due to FKRP

    No full text
    Fukutin-related protein (FKRP) is a putative glycosyltransferase that mediate O-linked glycosylation of the α-dystroglycan. Mutations in the FKRP gene cause a spectrum of diseases ranging from a limb girdle muscular dystrophy 2I (LGMD2I), to severe Walker-Warburg or muscle-eye-brain forms and a congenital muscular dystrophy (with or without mental retardation) termed MDC1C. This article reports on a Moroccan infant who presented at birth with moderate floppiness, high serum creatine kinase (CK) levels, and brain ultrasonograph suggestive of widening of the posterior fossa. Muscle biopsy displayed moderate dystrophic pattern with complete absence of α-distroglycan and genetic studies identified a homozygous missense variant in FKRP. Mutations in FKRP should be looked for in forms of neonatal-onset hyperCKaemia with floppiness and small cerebellum. © The Author(s) 2013

    Current Evidence and Theories in Understanding the Relationship between Cognition and Depression in Childhood and Adolescence: A Narrative Review

    No full text
    The present narrative review has covered the current evidence regarding the role of cognitive impairments during the early phase of major depressive disorder (MDD), attempting to describe the cognitive features in childhood, adolescence and in at-risk individuals. These issues were analyzed considering the trait, scar and state hypotheses of MDD by examining the cold and hot dimensions, the latter explained in relation to the current psychological theoretical models of MDD. This search was performed on several electronic databases up to August 2022. Although the present review is the first to have analyzed both cold and hot cognitive impairments considering the trait, scar and state hypotheses, we found that current evidence did not allow to exclusively confirm the validity of one specific hypothesis since several equivocal and discordant results have been proposed in childhood and adolescence samples. Further studies are needed to better characterize possible cognitive dysfunctions assessing more systematically the impairments of cold, hot and social cognition domains and their possible interaction in a developmental perspective. An increased knowledge on these topics will improve the definition of clinical endophenotypes of enhanced risk to progression to MDD and, to hypothesize preventive and therapeutic strategies to reduce negative influences on psychosocial functioning and well-being

    Managing Relevant Clinical Conditions of Hemophilia A/B Patients

    No full text
    The Medical Directors of nine Italian Hemophilia Centers reviewed and discussed the key issues concerning the replacement therapy of hemophilia patients during a one-day consensus conference held in Rome one year ago. Particular attention was paid to the replacement therapy needed for surgery using continuous infusion (CI) versus bolus injection (BI) of standard and extended half-life Factor VIII (FVIII) concentrates in severe hemophilia A patients. Among the side effects, the risk of development of neutralizing antibodies (inhibitors) and thromboembolic complications was addressed. The specific needs of mild hemophilia A patients were described, as well as the usage of bypassing agents to treat patients with high-responding inhibitors. Young hemophilia A patients may take significant advantages from primary prophylaxis three times or twice weekly, even with standard half-life (SHL) rFVIII concentrates. Patients affected by severe hemophilia B probably have a less severe clinical phenotype than severe hemophilia A patients, and in about 30% of cases may undergo weekly prophylaxis with an rFIX SHL concentrate. The prevalence of missense mutations in 55% of severe hemophilia B patients allows the synthesis of a partially changed FIX molecule that can play some hemostatic role at the level of endothelial cells or the subendothelial matrix. The flow back of infused rFIX from the extravascular to the plasma compartment allows a very long half-life of about 30 h in some hemophilia B patients. Once weekly, prophylaxis can assure a superior quality of life in a large severe or moderate hemophilia B population. According to the Italian registry of surgery, hemophilia B patients undergo joint replacement by arthroplasty less frequently than hemophilia A patients. Finally, the relationships between FVIII/IX genotypes and the pharmacokinetics of clotting factor concentrates have been investigated

    Congenital myopathies: clinical phenotypes and new diagnostic tools

    No full text
    Abstract Congenital myopathies are a group of genetic muscle disorders characterized clinically by hypotonia and weakness, usually from birth, and a static or slowly progressive clinical course. Historically, congenital myopathies have been classified on the basis of major morphological features seen on muscle biopsy. However, different genes have now been identified as associated with the various phenotypic and histological expressions of these disorders, and in recent years, because of their unexpectedly wide genetic and clinical heterogeneity, next-generation sequencing has increasingly been used for their diagnosis. We reviewed clinical and genetic forms of congenital myopathy and defined possible strategies to improve cost-effectiveness in histological and imaging diagnosis
    corecore