252 research outputs found

    Laboratory Rodent Welfare: Thinking Outside the Cage

    Get PDF
    This commentary presents the case against housing rats and mice in laboratory cages; the commentary bases its case on their sentience, natural history, and the varied detriments of laboratory conditions. The commentary gives 5 arguments to support this position: (a) rats and mice have a high degree of sentience and can suffer, (b) laboratory environments cause suffering, (c) rats and mice in the wild have discrete behavioral needs, (d) rats and mice bred for many generations in the laboratory retain these needs, and (e) these needs are not met in laboratory cages

    Non-Breeder Asymmetry in Florida Scrub Jays

    Get PDF
    The data of Woolfenden and Fitzpatrick (1984) show a statistically significant asymmetry in the sex ratio of non-breeders when one of the breeders is not the non-breeder\u27s parent. 1 propose that the asymmetry is attributable to a combination of two factors acting on non-breeders: the value of inheriting a territory, and incest avoidance. Although natal territories are only occasionally inherited by non-breeders, and then apparently only by males, the rate of inheritance is significantly higher for parent/step-parent breeders (n = 6) than when both breeders are the non-breeder\u27s parents (n = 1). An alternative hypothesis, that step-parents determine the non-breeder asymmetry by ousting potential rivals, might also explain the data, but evidence is currently lacking

    Toward Genuine Rodent Welfare: Response to Reviewer Comments

    Get PDF
    I’m grateful to the editors for soliciting critiques of my commentary and for the opportunity to respond. Because one of the respondents (Patterson-Kane, 2010/this issue) does not take issue with the main points of my article, whereas the other (Blanchard, 2010/this issue) does, I focus my remarks here mostly on Blanchard’s critique

    Characterising the distribution of methane and carbon dioxide emissions from the natural gas supply chain

    Get PDF
    Methane and CO2 emissions from the natural gas supply chain have been shown to vary widely but there is little understanding about the distribution of emissions across supply chain routes, processes, regions and operational practises. This study defines the distribution of total methane and CO2 emissions from the natural gas supply chain, identifying the contribution from each stage and quantifying the effect of key parameters on emissions. The study uses recent high-resolution emissions measurements with estimates of parameter distributions to build a probabilistic emissions model for a variety of technological supply chain scenarios. The distribution of emissions resembles a log-log-logistic distribution for most supply chain scenarios, indicating an extremely heavy tailed skew: median estimates which represent typical facilities are modest at 18 – 24 g CO2 eq./ MJ HHV, but mean estimates which account for the heavy tail are 22 – 107 g CO2 eq./ MJ HHV. To place these values into context, emissions associated with natural gas combustion (e.g. for heat) are approximately 55 g CO2/ MJ HHV. Thus, some supply chain scenarios are major contributors to total greenhouse gas emissions from natural gas. For methane-only emissions, median estimates are 0.8 – 2.2% of total methane production, with mean emissions of 1.6 - 5.5%. The heavy tail distribution is the signature of the disproportionately large emitting equipment known as super-emitters, which appear at all stages of the supply chain. The study analyses the impact of different technological options and identifies a set of best technological option (BTO) scenarios. This suggests that emissions-minimising technology can reduce supply chain emissions significantly, with this study estimating median emissions of 0.9% of production. However, even with the emissions-minimising technologies, evidence suggests that the influence of the super-emitters remains. Therefore, emissions-minimising technology is only part of the solution: reducing the impact of super emitters requires more effective detection and rectification, as well as pre-emptive maintenance processes

    Energy self-sufficiency, grid demand variability and consumer costs: Integrating solar PV, Stirling engine CHP and battery storage

    Get PDF
    Global uptake of solar PV has risen significantly over the past four years, motivated by increased economic feasibility and the desire for electricity self-sufficiency. However, significant uptake of solar PV could cause grid balancing issues. A system comprising Stirling engine combined heat and power, solar PV and battery storage (SECHP-PV-battery) may further improve self-sufficiency, satisfying both heat and electricity demand as well as mitigating potential negative grid effects. This paper presents the results of a simulation of 30 households with different energy demand profiles using this system, in order to determine: the degree of household electricity self-sufficiency achieved; resultant grid demand profiles; and the consumer economic costs and benefits. The results indicate that, even though PV and SECHP collectively produced 30% more electricity than the average demand of 3300. kWh/yr, households still had to import 28% of their electricity demand from the grid with a 6. kWh battery. This work shows that SECHP is much more effective in increasing self-sufficiency than PV, with the households consuming on average 49% of electricity generated (not including battery contribution), compared to 28% for PV. The addition of a 6. kWh battery to PV and SECHP improves the grid demand profile by 28% in terms of grid demand ramp-up requirement and 40% for ramp-downs. However, the variability of the grid demand profile is still greater than for the conventional system comprising a standard gas boiler and electricity from the grid. These moderate improvements must be weighed against the consumer cost: with current incentives, the system is only financially beneficial for households with high electricity demand (<4300. kWh/yr). A capital grant of 24% of the installed cost of the whole micro-generation system is required to make the system financially viable for households with an average electricity demand (3300. kWh/yr)

    Life cycle environmental impacts of natural gas drivetrains used in UK road freighting and impacts to UK emission targets

    Get PDF
    Using natural gas as a fuel in the road freight sector instead of diesel could cut greenhouse gas and air quality emissions but the switch alone is not enough to meet UK climate targets. A life cycle assessment (LCA) has been conducted comparing natural gas trucks to diesel, biodiesel, dimethyl ether and electric trucks on impacts to climate change, land use change, air quality, human health and resource depletion. This is the first LCA to consider a full suite of environmental impacts and is the first study to estimate what impact natural gas could have on reducing emissions form the UK freight sector. If LNG is used, climate change impacts could be up to 33% lower per km and up to 12% lower per kWh engine output. However, methane emissions will eliminate any benefits if they exceed 1.5–3.5% of throughput for typical fuel consumption. For non-climate impacts, natural gas exhibits lower emissions (11–66%) than diesel for all indicators. Thus, for natural gas climate benefits are modest. However, emissions of CO, methane and particulate matter are over air quality limits set for UK trucks. Of the other options, electric and biodiesel trucks perform best in climate change, but are the worst with respect to land use change (which could have significant impacts on overall climate change benefits), air quality, human toxicity and metals depletion indicators. Natural gas could help reduce the sector's emissions but deeper decarbonization options are required to meet 2030 climate targets, thus the window for beneficial utilisation is short

    Assessing the impact of future greenhouse gas emissions from natural gas production

    Get PDF
    Greenhouse gases (GHGs) produced by the extraction of natural gas are an important contributor to lifecycle emissions and account for a significant fraction of anthropogenic methane emissions in the USA. The timing as well as the magnitude of these emissions matters, as the short term climate warming impact of methane is up to 120 times that of CO 2 . This study uses estimates of CO 2 and methane emissions associated with different upstream operations to build a deterministic model of GHG emissions from conventional and unconventional gas fields as a function of time. By combining these emissions with a dynamic, techno-economic model of gas supply we assess their potential impact on the value of different types of project and identify stranded resources in various carbon price scenarios. We focus in particular on the effects of different emission metrics for methane, using the global warming potential (GWP) and the global temperature potential (GTP), with both fixed 20-year and 100-year CO 2 -equivalent values and in a time-dependent way based on a target year for climate stabilisation. We report a strong time dependence of emissions over the lifecycle of a typical field, and find that bringing forward the stabilisation year dramatically increases the importance of the methane contribution to these emissions. Using a commercial database of the remaining reserves of individual projects, we use our model to quantify future emissions resulting from the extraction of current US non-associated reserves. A carbon price of at least 400 USD/tonne CO 2 is effective in reducing cumulative GHGs by 30–60%, indicating that decarbonising the upstream component of the natural gas supply chain is achievable using carbon prices similar to those needed to decarbonise the energy system as a whole. Surprisingly, for large carbon prices, the choice of emission metric does not have a significant impact on cumulative emissions
    • …
    corecore