416 research outputs found

    Investigation of nasal colonization of health care workers by methicillin-resistant Staphylococcus aureus with using new generation real-time PCR assay: Discussing of risks

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA) is a nasal infectious pathogen which is becoming of significant importance year by year. Mortality, morbidity and treatment costs of MRSA infectionshave all increased. The most effective preventative tool is rapid confirmation of MRSA existence, followed by efficient execution of the required infection control measures. This study was performedwith the aim of evaluating MRSA colonization in health care staff from intensive care units (internal and surgical intensive care units) (ICUs) and how certain risk factors affect their colonization status. The study was conducted prospectively using samples obtained from nasal swabs of health-care staffs working in different missions in the intensive care unit of Gaziantep University Training Hospital in southeast of Turkey. The nasal swab samples were processed using a real-time PCR method platformcalled GeneXpert (Cepheid). Our PCR screen revealed the presence of MRSA in 14 of 98 health-care staffs. Of these 14 health-care staffs carrying nasal MRSA, 10 were male, 8 were assistant health-care personnel and 11 have been working for over one year in the intensive care unit. Our data showed that male gender and an employment during of more than one year served as significant risk factors for nasal MRSA colonization

    The zebrafish reveals dependence of the mast cell lineage on Notch signaling in vivo

    Get PDF
    We used the opportunities afforded by the zebrafish to determine upstream pathways regulating mast cell development in vivo and identify their cellular origin. Colocalization studies demonstrated zebrafish notch receptor expression in cells expressing carboxypeptidase A5 (cpa5), a zebrafish mast cell-specific marker. Inhibition of the Notch pathway resulted in decreased cpa5 expression in mindbomb mutants and wild-type embryos treated with the γ-secretase inhibitor, Compound E.Aseries of morpholino knockdown studies specifically identified notch1b and gata2 as the critical factors regulating mast cell fate. Moreover, hsp70::GAL4;UAS::nicd1a transgenic embryos overexpressing an activated form of notch1, nicd1a, displayed increased cpa5, gata2, and pu.1 expression. This increase in cpa5 expression could be reversed and reduced below baseline levels in a dose-dependent manner usingCompound E. Finally, evidence that cpa5 expression colocalizes with lmo2 in the absence of hematopoietic stem cells revealed that definitive mast cells initially delineate from erythromyeloid progenitors. These studies identify a master role for Notch signaling in vertebrate mast cell development and establish developmental origins of this lineage. Moreover, these findings postulate targeting the Notch pathway as a therapeutic strategy in mast cell diseases. © 2012 by The American Society of Hematology

    High-responsivity graphene photodetectors integrated on silicon microring resonators.

    Get PDF
    Graphene integrated photonics provides several advantages over conventional Si photonics. Single layer graphene (SLG) enables fast, broadband, and energy-efficient electro-optic modulators, optical switches and photodetectors (GPDs), and is compatible with any optical waveguide. The last major barrier to SLG-based optical receivers lies in the current GPDs' low responsivity when compared to conventional PDs. Here we overcome this by integrating a photo-thermoelectric GPD with a Si microring resonator. Under critical coupling, we achieve >90% light absorption in a ~6 μm SLG channel along a Si waveguide. Cavity-enhanced light-matter interactions cause carriers in SLG to reach ~400 K for an input power ~0.6 mW, resulting in a voltage responsivity ~90 V/W, with a receiver sensitivity enabling our GPDs to operate at a 10-9 bit-error rate, on par with mature semiconductor technology, but with a natural generation of a voltage, rather than a current, thus removing the need for transimpedance amplification, with a reduction of energy-per-bit, cost, and foot-print

    Graphene-perovskite fibre photodetectors

    Full text link
    The integration of optoelectronic devices, such as transistors and photodetectors (PDs), into wearables and textiles is of great interest for applications such as healthcare and physiological monitoring. These require flexible/wearable systems adaptable to body motions, thus materials conformable to non-planar surfaces, and able to maintain performance under mechanical distortions. Here, we prepare fibre PDs combining rolled graphene layers and photoactive perovskites. Conductive fibres (\sim500Ω\Omega/cm) are made by rolling single layer graphene (SLG) around silica fibres, followed by deposition of a dielectric layer (Al2_{2}O3_{3} and parylene C), another rolled SLG as channel, and perovskite as photoactive component. The resulting gate-tunable PDs have response time\sim5ms, with an external responsivity\sim22kA/W at 488nm for 1V bias. The external responsivity is two orders of magnitude higher and the response time one order of magnitude faster than state-of-the-art wearable fibre based PDs. Under bending at 4mm radius, up to\sim80\% photocurrent is maintained. Washability tests show\sim72\% of initial photocurrent after 30 cycles, promising for wearable applications

    A transgenic zebrafish model expressing KIT-D816V recapitulates features of aggressive systemic mastocytosis

    Get PDF
    Summary: Systemic mastocytosis (SM) is a rare myeloproliferative disease without curative therapy. Despite clinical variability, the majority of patients harbour a KIT-D816V mutation, but efforts to inhibit mutant KIT with tyrosine kinase inhibitors have been unsatisfactory, indicating a need for new preclinical approaches to identify alternative targets and novel therapies in this disease. Murine models to date have been limited and do not fully recapitulate the most aggressive forms of SM. We describe the generation of a transgenic zebrafish model expressing the human KIT-D816V mutation. Adult fish demonstrate a myeloproliferative disease phenotype, including features of aggressive SM in haematopoeitic tissues and high expression levels of endopeptidases, consistent with SM patients. Transgenic embryos demonstrate a cell-cycle phenotype with corresponding expression changes in genes associated with DNA maintenance and repair, such as reduced dnmt1. In addition, epcam was consistently downregulated in both transgenic adults and embryos. Decreased embryonic epcam expression was associated with reduced neuromast numbers, providing a robust in vivo phenotypic readout for chemical screening in KIT-D816V-induced disease. This study represents the first zebrafish model of a mast cell disease with an aggressive adult phenotype and embryonic markers that could be exploited to screen for novel agents in SM

    Point contact spectroscopy of the electron-doped cuprate superconductor Pr{2-x}Ce{x}CuO4: The dependence of conductance-voltage spectra on cerium doping, barrier strength and magnetic field

    Full text link
    We present conductance-voltage (G-V) data for point contact junctions between a normal metal and the electron doped cuprate superconductor Pr{2-x}Ce{x}CuO4 (PCCO). We observe a zero bias conductance peak (ZBCP) for the under-doped composition of this cuprate (x=0.13) which is consistent with d-wave pairing symmetry. For optimally-doped (x=0.15) and over-doped (x=0.17) PCCO, we find that the G-V characteristics indicate the presence of an order parameter without nodes. We investigate this further by obtaining point contact spectroscopy data for different barrier strengths and as a function of magnetic field.Comment: 13 pages, 9 figure

    Electrophysiological evaluation of phrenic nerve injury during cardiac surgery – a prospective, controlled, clinical study

    Get PDF
    BACKGROUND: According to some reports, left hemidiaphragmatic paralysis due to phrenic nerve injury may occur following cardiac surgery. The purpose of this study was to document the effects on phrenic nerve injury of whole body hypothermia, use of ice-slush around the heart and mammary artery harvesting. METHODS: Electrophysiology of phrenic nerves was studied bilaterally in 78 subjects before and three weeks after cardiac or peripheral vascular surgery. In 49 patients, coronary artery bypass grafting (CABG) and heart valve replacement with moderate hypothermic (mean 28°C) cardiopulmonary bypass (CPB) were performed. In the other 29, CABG with beating heart was performed, or, in several cases, peripheral vascular surgery with normothermia. RESULTS: In all patients, measurements of bilateral phrenic nerve function were within normal limits before surgery. Three weeks after surgery, left phrenic nerve function was absent in five patients in the CPB and hypothermia group (3 in CABG and 2 in valve replacement). No phrenic nerve dysfunction was observed after surgery in the CABG with beating heart (no CPB) or the peripheral vascular groups. Except in the five patients with left phrenic nerve paralysis, mean phrenic nerve conduction latency time (ms) and amplitude (mV) did not differ statistically before and after surgery in either group (p > 0.05). CONCLUSIONS: Our results indicate that CPB with hypothermia and local ice-slush application around the heart play a role in phrenic nerve injury following cardiac surgery. Furthermore, phrenic nerve injury during cardiac surgery occurred in 10.2 % of our patients (CABG with CPB plus valve surgery)
    corecore