67 research outputs found

    Tight Lower Bounds for Multiplicative Weights Algorithmic Families

    Get PDF
    We study the fundamental problem of prediction with expert advice and develop regret lower bounds for a large family of algorithms for this problem. We develop simple adversarial primitives, that lend themselves to various combinations leading to sharp lower bounds for many algorithmic families. We use these primitives to show that the classic Multiplicative Weights Algorithm (MWA) has a regret of Tlnk2\sqrt{\frac{T \ln k}{2}}, there by completely closing the gap between upper and lower bounds. We further show a regret lower bound of 23Tlnk2\frac{2}{3}\sqrt{\frac{T\ln k}{2}} for a much more general family of algorithms than MWA, where the learning rate can be arbitrarily varied over time, or even picked from arbitrary distributions over time. We also use our primitives to construct adversaries in the geometric horizon setting for MWA to precisely characterize the regret at 0.391δ\frac{0.391}{\sqrt{\delta}} for the case of 22 experts and a lower bound of 12lnk2δ\frac{1}{2}\sqrt{\frac{\ln k}{2\delta}} for the case of arbitrary number of experts kk

    Lower Bounds on Revenue of Approximately Optimal Auctions

    Get PDF
    We obtain revenue guarantees for the simple pricing mechanism of a single posted price, in terms of a natural parameter of the distribution of buyers' valuations. Our revenue guarantee applies to the single item n buyers setting, with values drawn from an arbitrary joint distribution. Specifically, we show that a single price drawn from the distribution of the maximum valuation Vmax = max {V_1, V_2, ...,V_n} achieves a revenue of at least a 1/e fraction of the geometric expecation of Vmax. This generic bound is a measure of how revenue improves/degrades as a function of the concentration/spread of Vmax. We further show that in absence of buyers' valuation distributions, recruiting an additional set of identical bidders will yield a similar guarantee on revenue. Finally, our bound also gives a measure of the extent to which one can simultaneously approximate welfare and revenue in terms of the concentration/spread of Vmax.Comment: The 8th Workshop on Internet and Network Economics (WINE

    Optimal Crowdsourcing Contests

    Full text link
    We study the design and approximation of optimal crowdsourcing contests. Crowdsourcing contests can be modeled as all-pay auctions because entrants must exert effort up-front to enter. Unlike all-pay auctions where a usual design objective would be to maximize revenue, in crowdsourcing contests, the principal only benefits from the submission with the highest quality. We give a theory for optimal crowdsourcing contests that mirrors the theory of optimal auction design: the optimal crowdsourcing contest is a virtual valuation optimizer (the virtual valuation function depends on the distribution of contestant skills and the number of contestants). We also compare crowdsourcing contests with more conventional means of procurement. In this comparison, crowdsourcing contests are relatively disadvantaged because the effort of losing contestants is wasted. Nonetheless, we show that crowdsourcing contests are 2-approximations to conventional methods for a large family of "regular" distributions, and 4-approximations, otherwise.Comment: The paper has 17 pages and 1 figure. It is to appear in the proceedings of ACM-SIAM Symposium on Discrete Algorithms 201

    Improved Revenue Bounds for Posted-Price and Second-Price Mechanisms

    Full text link
    We study revenue maximization through sequential posted-price (SPP) mechanisms in single-dimensional settings with nn buyers and independent but not necessarily identical value distributions. We construct the SPP mechanisms by considering the best of two simple pricing rules: one that imitates the revenue optimal mchanism, namely the Myersonian mechanism, via the taxation principle and the other that posts a uniform price. Our pricing rules are rather generalizable and yield the first improvement over long-established approximation factors in several settings. We design factor-revealing mathematical programs that crisply capture the approximation factor of our SPP mechanism. In the single-unit setting, our SPP mechanism yields a better approximation factor than the state of the art prior to our work (Azar, Chiplunkar & Kaplan, 2018). In the multi-unit setting, our SPP mechanism yields the first improved approximation factor over the state of the art after over nine years (Yan, 2011 and Chakraborty et al., 2010). Our results on SPP mechanisms immediately imply improved performance guarantees for the equivalent free-order prophet inequality problem. In the position auction setting, our SPP mechanism yields the first higher-than 11/e1-1/e approximation factor. In eager second-price (ESP) auctions, our two simple pricing rules lead to the first improved approximation factor that is strictly greater than what is obtained by the SPP mechanism in the single-unit setting.Comment: Accepted to Operations Researc
    corecore