25 research outputs found

    Designs and Materials for Better Coronagraph Occulting Masks

    Get PDF
    New designs, and materials appropriate for such designs, are under investigation in an effort to develop coronagraph occulting masks having broad-band spectral characteristics superior to those currently employed. These designs and materials are applicable to all coronagraphs, both ground-based and spaceborne. This effort also offers potential benefits for the development of other optical masks and filters that are required (1) for precisely tailored spatial transmission profiles, (2) to be characterized by optical-density neutrality and phase neutrality (that is, to be characterized by constant optical density and constant phase over broad wavelength ranges), and/or (3) not to exhibit optical- density-dependent phase shifts. The need for this effort arises for the following reasons: Coronagraph occulting masks are required to impose, on beams of light transmitted through them, extremely precise control of amplitude and phase according to carefully designed transmission profiles. In the original application that gave rise to this effort, the concern has been to develop broad-band occulting masks for NASA s Terrestrial Planet Finder coronagraph. Until now, experimental samples of these masks have been made from high-energy-beam-sensitive (HEBS) glass, which becomes locally dark where irradiated with a high-energy electron beam, the amount of darkening depending on the electron-beam energy and dose. Precise mask profiles have been written on HEBS glass blanks by use of electron beams, and the masks have performed satisfactorily in monochromatic light. However, the optical-density and phase profiles of the HEBS masks vary significantly with wavelength; consequently, the HEBS masks perform unsatisfactorily in broad-band light. The key properties of materials to be used in coronagraph occulting masks are their extinction coefficients, their indices of refraction, and the variations of these parameters with wavelength. The effort thus far has included theoretical predictions of performances of masks that would be made from alternative materials chosen because the wavelength dependences of their extinction coefficients and their indices of refraction are such that that the optical-density and phase profiles of masks made from these materials can be expected to vary much less with wavelength than do those of masks made from HEBS glass. The alternative materials considered thus far include some elemental metals such as Pt and Ni, metal alloys such as Inconel, metal nitrides such as TiN, and dielectrics such as SiO2. A mask as now envisioned would include thin metal and dielectric films having stepped or smoothly varying thicknesses (see figure). The thicknesses would be chosen, taking account of the indices of refraction and extinction coefficients, to obtain an acceptably close approximation of the desired spatial transmittance profile with a flat phase profil

    Performance of an Achromatic Focal Plane Mask for Exoplanet Imaging Coronagraphy

    Get PDF
    Coronagraph technology combined with wavefront control is close to achieving the contrast and inner working angle requirements in the lab necessary to observe the faint signal of an Earth-like exoplanet in monochromatic light. An important remaining technological challenge is to achieve high contrast in broadband light. Coronagraph bandwidth is largely limited by chromaticity of the focal plane mask, which is responsible for blocking the stellar PSF. The size of a stellar PSF scales linearly with wavelength; ideally, the size of the focal plane mask would also scale with wavelength. A conventional hard-edge focal plane mask has a fixed size, normally sized for the longest wavelength in the observational band to avoid starlight leakage. The conventional mask is oversized for shorter wavelengths and blocks useful discovery space. Recently we presented a solution to the size chromaticity challenge with a focal plane mask designed to scale its effective size with wavelength. In this paper, we analyze performance of the achromatic size-scaling focal plane mask within a Phase Induced Amplitude Apodization (PIAA) coronagraph. We present results from wavefront control around the achromatic focal plane mask, and demonstrate the size-scaling effect of the mask with wavelength. The edge of the dark zone, and therefore the inner working angle of the coronagraph, scale with wavelength. The achromatic mask enables operation in a wider band of wavelengths compared with a conventional hard-edge occulter

    Numerically optimized coronagraph designs for the Habitable Exoplanet Imaging Mission (HabEx) concept

    Get PDF
    The primary science goal of the Habitable Exoplanet Imaging Mission (HabEx), one of four candidate flagship missions under investigation, is to image and spectrally characterize Earth-like exoplanets. It is well known that pupil obscurations degrade coronagraphic performance and complicate coronagraph design, so HabEx is planned to have an off-axis, unobscured primary mirror. We utilize the circular symmetry of the aperture to investigate 1D-radial coronagraph optimization methods that are prohibitively time-consuming or intractable in 2D, such as diffractive pupil remapping and concurrent, multi-plane optimization. We also directly constrain sensitivities to dynamic, low-order Zernike aberrations, which are separable in polar coordinates and can thus be propagated as 1D-radial integrals. The mask technologies in our designs claim heritage from the extensive modeling and testbed experiments performed by the Wide-Field Infrared Survey Telescope (WFIRST) Coronagraph Instrument (CGI) project. In this paper, we detail our optimization methods and outline future work to complete our design survey

    Numerically optimized coronagraph designs for the Habitable Exoplanet Imaging Mission (HabEx) concept

    Get PDF
    The primary science goal of the Habitable Exoplanet Imaging Mission (HabEx), one of four candidate flagship missions under investigation, is to image and spectrally characterize Earth-like exoplanets. It is well known that pupil obscurations degrade coronagraphic performance and complicate coronagraph design, so HabEx is planned to have an off-axis, unobscured primary mirror. We utilize the circular symmetry of the aperture to investigate 1D-radial coronagraph optimization methods that are prohibitively time-consuming or intractable in 2D, such as diffractive pupil remapping and concurrent, multi-plane optimization. We also directly constrain sensitivities to dynamic, low-order Zernike aberrations, which are separable in polar coordinates and can thus be propagated as 1D-radial integrals. The mask technologies in our designs claim heritage from the extensive modeling and testbed experiments performed by the Wide-Field Infrared Survey Telescope (WFIRST) Coronagraph Instrument (CGI) project. In this paper, we detail our optimization methods and outline future work to complete our design survey

    The JWST/NIRCam coronagraph flight occulters

    Get PDF
    The NIRCam instrument on the James Webb Space Telescope will have a Lyot coronagraph for high contrast imaging of extrasolar planets and circumstellar disks at 位=2 - 5 渭m. Half-tone patterns are used to create graded-transmission image plane masks. These are generated using electron beam lithography and reactive ion etching of a metal layer on an antireflection coated sapphire substrate. We report here on the manufacture and evaluation of the flight occulters

    JWST/NIRCam coronagraph: mask design and fabrication

    Get PDF
    The NIRCam instrument on the James Webb Space Telescope will provide coronagraphic imaging from 位 =1-5 渭m of high contrast sources such as extrasolar planets and circumstellar disks. A Lyot coronagraph with a variety of circular and wedge-shaped occulting masks and matching Lyot pupil stops will be implemented. The occulters approximate grayscale transmission profiles using halftone binary patterns comprising wavelength-sized metal dots on anti-reflection coated sapphire substrates. The mask patterns are being created in the Micro Devices Laboratory at the Jet Propulsion Laboratory using electron beam lithography. Samples of these occulters have been successfully evaluated in a coronagraphic testbed. In a separate process, the complex apertures that form the Lyot stops will be deposited onto optical wedges. The NIRCam coronagraph flight components are expected to be completed this year

    The JWST/NIRCam coronagraph flight occulters

    Get PDF
    The NIRCam instrument on the James Webb Space Telescope will have a Lyot coronagraph for high contrast imaging of extrasolar planets and circumstellar disks at 位=2 - 5 渭m. Half-tone patterns are used to create graded-transmission image plane masks. These are generated using electron beam lithography and reactive ion etching of a metal layer on an antireflection coated sapphire substrate. We report here on the manufacture and evaluation of the flight occulters
    corecore