1,647 research outputs found

    On the Suitability of the Bandler–Kohout Subproduct as an Inference Mechanism

    Get PDF
    Fuzzy relational inference (FRI) systems form an important part of approximate reasoning schemes using fuzzy sets. The compositional rule of inference (CRI), which was introduced by Zadeh, has attracted the most attention so far. In this paper, we show that the FRI scheme that is based on the Bandler-Kohout (BK) subproduct, along with a suitable realization of the fuzzy rules, possesses all the important properties that are cited in favor of using CRI, viz., equivalent and reasonable conditions for their solvability, their interpolative properties, and the preservation of the indistinguishability that may be inherent in the input fuzzy sets. Moreover, we show that under certain conditions, the equivalence of first-infer-then-aggregate (FITA) and first-aggregate-then-infer (FATI) inference strategies can be shown for the BK subproduct, much like in the case of CRI. Finally, by addressing the computational complexity that may exist in the BK subproduct, we suggest a hierarchical inferencing scheme. Thus, this paper shows that the BK-subproduct-based FRI is as effective and efficient as the CRI itself

    Intersections between some families of (U,N)- and RU-implications

    Get PDF
    (U,N)-implications and RU-implications are the generalizations of (S,N)- and R-implications to the framework of uninorms, where the t-norms and t-conorms are replaced by appropriate uninorms. In this work, we present the intersections that exist between (U,N)-implications and the different families of RU-implications obtainable from the well-established families of uninorms

    Collective clusterization effects in light heavy ion reactions

    Full text link
    The collective clusterization process, proposed for intermediate mass fragments (IMFs, 4<<A\le28, 2<<Z\le14) emitted from the hot and rotating compound nuclei formed in low energy reactions, is extended further to include also the emission of light particles (LPs, A\le4, Z\le2) from the fusion-evaporation residues. Both the LPs and IMFs are treated as the dynamical collective mass motion of preformed clusters through the barrier. Compared to IMFs, LPs are shown to have different characteristics, and the predictions of our, so-called, dynamical cluster-decay model are similar to those of the statistical fission model.Comment: 4 pages, 3 figures, Conferenc
    corecore