860 research outputs found
Participatory processes and institutional debate activities as key complementary aspects for embedding sustainability in higher education
Introducing sustainable development into educational programs of universities tend to be
approached under two complementary strategies: âtop-downâ and âbottom-upâ. Top-down
strategies promote the adaptation of the institutional framework to the new challenges that
sustainable development generates into technical expertise areas. Bottom-up strategies focus
on institutional activities oriented to convincing or supporting lecturers in integrating sustainable
development in their different courses and projects. However, these actions are not enough for
the actual challenge if sustainable development is seen as a transformative social learning
process in which the role of academia regarding sustainable development âis not on integration
but rather one of innovation and systemic change within our institutions that will allow for more
transformative learning to take placeâ. Thus, there are other strategies âin-betweenâ that
complement these to approaches, because they help to accelerate the institutional culture shift
and therefore facilitate the concrete changes needed. The aim of this paper is to describe the
UPC experience on the development of two complementary aspects developed under its UPC
Sustainable 2015 institutional strategy: participatory processes and institutional debate
activities.Peer Reviewe
Introducing sustainable development in engineering education: competences, pedagogy and curriculum
Introducing sustainable development (SD) in engineering education has been a key topic in many technological universities [1], accreditation agencies and International and National networks of universities.
At the UNESCO chair of Sustainability of the Technical University of Catalonia (UPC) under their PhD program on Sustainability the authors have carried out a research on:
1. Which SD competences may engineers have when graduating?
2. How should SD competences be taught/learned at technological universities?
3. Which curriculum structure is more suitable to facilitate the acquisition of SD competences?
To evaluate the competences we compared three leading European universities in introduction of SD. The competences are classified in three categories: knowledge and understanding, skills and abilities and attitudes [2].
To evaluate the pedagogical approach that facilitates the SD learning we analysed 10 case studies of courses on Sustainability from 5 European technological universities. We used conceptual maps [3, 4] as assessment tool.
To analyse the curriculum design for SD 50 experts on curriculum design and teaching SD courses were interviewed.
The methodology and results of this work are presented and recommendations to introduce SD in technological universities in the three fields: competences, pedagogy and curriculum are suggested.Peer Reviewe
Versatile hollow fluorescent metal-silica nanohybrids through a modified microemulsion synthesis route
Silica-metal nanohybrids are common materials for applications in biomedicine, catalysis or sensing. Also, hollow structures are of interest as they provide additional useful features. However, in these materials the control of the size and accessibility to the inner regions of the structure usually requires complex synthesis procedures. Here we report a simple colloidal procedure for synthesizing hollow silica-metal nanohybrids, driven by the diffusion of metal precursors through the porous silica shell and subsequent reduction in aqueous solutions. The formation of hollow nanoparticles is controlled by the colloidal conditions during synthesis, which affect the ripening of hollow nanoparticles in presence of organosilanes. The modification of the conditions during synthesis affected the growth of silica precursors in presence of fluorescein isothiocyanate (FITC). The limited access to water molecules during the hydrolysis of silica precursors is attributed to the hydrophobicity of organic fluorescent molecules linked to the condensing silica clusters at the initial stages of nanoparticle formation and to the limitation of water content in the microemulsion method used. Finally, the growth of metal nanoseeds at the core of hollow nanoparticles can be easily achieved though a simple method in aqueous environment. The pH and thermal conditions during the reduction process affect the formation of metal-silica nanohybrids and their structural features
Improving Clinical Practice Using Clinical Decision Support Systems: A Systematic Review of Trials to Identify Features Critical to Success
Objective To identify features of clinical decision support systems critical for improving clinical practice. Design Systematic review of randomised controlled trials. Data sources Literature searches via Medline, CINAHL, and the Cochrane Controlled Trials Register up to 2003; and searches of reference lists of included studies and relevant reviews. Study selection Studies had to evaluate the ability of decision support systems to improve clinical practice. Data extraction Studies were assessed for statistically and clinically significant improvement in clinical practice and for the presence of 15 decision support system features whose importance had been repeatedly suggested in the literature. Results Seventy studies were included. Decision support systems significantly improved clinical practice in 68% of trials. Univariate analyses revealed that, for five of the system features, interventions possessing the feature were significantly more likely to improve clinical practice than interventions lacking the feature. Multiple logistic regression analysis identified four features as independent predictors of improved clinical practice: automatic provision of decision support as part of clinician workflow (P \u3c 0.00001), provision of recommendations rather than just assessments (P = 0.0187), provision of decision support at the time and location of decision making (P = 0.0263), and computer based decision support (P = 0.0294). Of 32 systems possessing all four features, 30 (94%) significantly improved clinical practice. Furthermore, direct experimental justification was found for providing periodic performance feedback, sharing recommendations with patients, and requesting documentation of reasons for not following recommendations. Conclusions Several features were closely correlated with decision support systems\u27 ability to improve patient care significantly. Clinicians and other stakeholders should implement clinical decision support systems that incorporate these features whenever feasible and appropriate
Fast and simple assessment of surface contamination in operations involving nanomaterials
The deposition of airborne nanosized matter onto surfaces could pose a potential risk in occupational and environmental scenarios. The incorporation of fluorescent labels, namely fluorescein isotiocyanate (FITC) or tris-1, 3-phenanthroline ruthenium (II) chloride (Ru(phen)3Cl2), into spherical 80-nm silica nanoparticles allowed the detection after the illumination with LED light of suitable wavelength (365 or 405 nm respectively). Monodisperse nanoparticle aerosols from fluorescently labeled nanoparticles were produced under safe conditions using powder generators and the deposition was tested into different surfaces and filtering media. The contamination of gloves and work surfaces that was demonstrated by sampling and SEM analysis becomes immediately clear under laser or LED illumination. Furthermore, nanoparticle aerosols of about 105 nanoparticles/cm3 were alternatively fed through a glass pipe and personal protective masks to identify the presence of trapped nanoparticles under 405 nm or 365 nm LED light. This testing procedure allowed a fast and reliable estimation of the contamination of surfaces with nanosized matter, with a limit of detection based on the fluorescence emission of the accumulated solid nanoparticles of 40 ng of Ru(phen)3@SiO2 of silica per mg of non-fluorescent matter
Biomimetic apatite formation on different polymeric microspheres modified with calcium silicate solutions
Proceedings of the 18th International Symposium on Ceramics in Medicine, The Annual Meeting of the International Society for Ceramics in Medicine (ISCM), Kyoto, Japan, 5-8 December 2005. Published in : Key Enggineering Materials, vol. 309 - 311Bioactive polymeric microspheres can be produced by pre-coating them with a calcium
silicate solution and the subsequent soaking in a simulated body fluid (SBF). Such combination
should allow for the development of bioactive microspheres for several applications in the medical
field including tissue engineering. In this work, three types of polymeric microspheres with different
sizes were used: (i) ethylene-vinyl alcohol co-polymer (20-30 'm), (ii) polyamide 12 (10-30 'm) and
(iii) polyamide 12 (300 'm). These microspheres were soaked in a calcium silicate solution at 36.5ÂșC
for different periods of time under several conditions. Afterwards, they were dried in air at 100ÂșC for
24 hrs. Then, the samples were soaked in SBF for 1, 3 and 7 days. Fourier transformed infrared
spectroscopy, thin-film X-ray diffraction, and scanning electron microscopy showed that after the
calcium silicate treatment and the subsequent soaking in SBF, the microspheres successfully formed a
bonelike apatite layer on their surfaces in SBF within 7 days due to the formation of silanol (Si-OH)
groups that are quite effective for apatite formation.I. B. Leonor thanks the Portuguese Foundation for Science and Technology (FCT) for providing her a PhD scholarship (SFRH/BD/9031/2002) and the European Union funded STREP Project HIPPOCRATES (NMP3-CT-2003-505758) and the European NoE EXPERTISSUES (NMP3-CT-2004-500283)
Exact Solution Methods for the -item Quadratic Knapsack Problem
The purpose of this paper is to solve the 0-1 -item quadratic knapsack
problem , a problem of maximizing a quadratic function subject to two
linear constraints. We propose an exact method based on semidefinite
optimization. The semidefinite relaxation used in our approach includes simple
rank one constraints, which can be handled efficiently by interior point
methods. Furthermore, we strengthen the relaxation by polyhedral constraints
and obtain approximate solutions to this semidefinite problem by applying a
bundle method. We review other exact solution methods and compare all these
approaches by experimenting with instances of various sizes and densities.Comment: 12 page
Fruit size and firmness QTL alleles of breeding interest identified in a sweet cherry âAmbrunĂ©sâ Ă âSweetheartâ population
The Spanish local cultivar âAmbrunĂ©sâ stands out due to its high organoleptic quality and fruit firmness. These characteristics make it an important parent for breeding cherries with excellent fresh and post-harvest quality. In this work, an F1 sweet cherry population (n = 140) from âAmbrunĂ©sâ Ă âSweetheartâ was phenotyped for 2 years for fruit diameter, weight and firmness and genotyped with the RosBREED cherry Illumina InfiniumÂź 6K SNP array v1. These data were used to construct a linkage map and to carry out quantitative trait locus (QTL) mapping of these fruit quality traits. Genotyping of the parental cultivars revealed that âAmbrunĂ©sâ is highly heterozygous, and its genetic map is the longest reported in the species using the same SNP array. Phenotypic data analyses confirmed a high heritability of fruit size and firmness and a distorted segregation towards softer and smaller fruits. However, individuals with larger and firmer fruits than the parental cultivars were observed, revealing the presence of alleles of breeding interest. In contrast to other genetic backgrounds in which a negative correlation was observed between firmness and size, in this work, no correlation or low positive correlation was detected between both traits. Firmness, diameter and weight QTLs detected validated QTLs previously found for the same traits in the species, and major QTLs for the three traits were located on a narrow region of LG1 of âAmbrunĂ©sâ. Haplotype analyses of these QTLs revealed haplotypes of breeding interest in coupling phase in âAmbrunĂ©sâ, which can be used for the selection of progeny with larger and firmer fruits
Surface potential change in bioactive polymer during the process of biomimetic apatite formation in a simulated body fluid
A bioactive polyethylene substrate can be produced by incorporation of sulfonic functional groups (-SO3H) on its surface and by soaking in a calcium hydroxide saturated solution. Variation of the surface potential of the polyethylene modified with -SO3H groups with soaking in a simulated body fluid (SBF) was investigated using a laser electrophoresis zeta-potential analyzer. To complement the study using laser electrophoresis, the surface was examined by X-ray photoelectron spectroscopy (XPS), thin film X-ray diffraction (TF-XRD), field-emission scanning electron microscopy (FE-SEM) and energy-dispersive electron X-ray spectroscopy (EDS). Comparing the zeta potential of sulfonated and Ca(OH)2-treated polyethylene with its surface structure at each interval of these soaking times in SBF, it is apparent that the polymer has a negative surface potential when it forms -SO3H groups on its surface. The surface potential of the polymer increases when it forms amorphous calcium sulfate. The potential decreases when it forms amorphous calcium phosphate, revealing a constant negative value after forming apatite. The XPS and zeta potential analysis demonstrated that the surface potential of the polyethylene was highly negatively charged after soaking in SBF for 0.5 h, increased for higher soaking times (up to 48 h), and then decreased. The negative charge of the polymer at a soaking time of 0.5 h is attributed to the presence of -SO3H groups on the surface. The initial increase in the surface potential was attributed to the incorporation of positively charged calcium ions to form calcium sulfate, and then the subsequent decrease was assigned to the incorporation of negatively charged phosphate ions to form amorphous calcium phosphate, which eventually transformed into apatite. These results indicate that the formation of apatite on bioactive polyethylene in SBF is due to electrostatic interaction of the polymer surface and ions in the fluid
- âŠ