849 research outputs found
Packing While Traveling: Mixed Integer Programming for a Class of Nonlinear Knapsack Problems
Packing and vehicle routing problems play an important role in the area of
supply chain management. In this paper, we introduce a non-linear knapsack
problem that occurs when packing items along a fixed route and taking into
account travel time. We investigate constrained and unconstrained versions of
the problem and show that both are NP-hard. In order to solve the problems, we
provide a pre-processing scheme as well as exact and approximate mixed integer
programming (MIP) solutions. Our experimental results show the effectiveness of
the MIP solutions and in particular point out that the approximate MIP approach
often leads to near optimal results within far less computation time than the
exact approach
Emergency preparedness to accidental chemical spills from tankers in Istanbul Strait
Istanbul Strait is one of the most important and dangerous maritime passage in the world. In this study, the hazards for possible accidents of the tankers carrying various chemicals through the Istanbul Strait were investigated and a significant risk was identified due to the intensive transportation of the chemicals. The purpose of this work is to define some risk control options in order to establish an efficient management system which can minimize the probability of accidents and hazardous effects of possible chemical spills to human life and environment. The risk is assessed by using the Formal Safety Assessment Methodology of the International Maritime Organization. Following this methodology hazards of accidents were identified through a questionnaire which is applied to a group of experts focussed on a passage of Istanbul Strait. In addition to this, a frequency analysis of the accidents was carried out on the defined sections along the strait using the accident database in order to determine the geographical distribution of the type and cause of the accidents. On the other hand, the maritime traffic of the Istanbul Strait was simulated using computer based software in order to investigate the effects of the local traffic on the passage. As a conclusion of the simulation the hot spots were defined as the potential locations for collisions. Also the consequences of such probable accidents were evaluated by using different dispersion modelling software for the spilled chemicals. As a result, a comprehensive management system for preparedness and response to chemical spills in the Istanbul Strait were proposed by taking into account the current management system and response equipment. Furthermore, a detailed economic analysis of the proposed system was also performed
Optimization by thermal cycling
Thermal cycling is an heuristic optimization algorithm which consists of
cyclically heating and quenching by Metropolis and local search procedures,
respectively, where the amplitude slowly decreases. In recent years, it has
been successfully applied to two combinatorial optimization tasks, the
traveling salesman problem and the search for low-energy states of the Coulomb
glass. In these cases, the algorithm is far more efficient than usual simulated
annealing. In its original form the algorithm was designed only for the case of
discrete variables. Its basic ideas are applicable also to a problem with
continuous variables, the search for low-energy states of Lennard-Jones
clusters.Comment: Submitted to Proceedings of the Workshop "Complexity, Metastability
and Nonextensivity", held in Erice 20-26 July 2004. Latex, 7 pages, 3 figure
Nonlinear Integer Programming
Research efforts of the past fifty years have led to a development of linear
integer programming as a mature discipline of mathematical optimization. Such a
level of maturity has not been reached when one considers nonlinear systems
subject to integrality requirements for the variables. This chapter is
dedicated to this topic.
The primary goal is a study of a simple version of general nonlinear integer
problems, where all constraints are still linear. Our focus is on the
computational complexity of the problem, which varies significantly with the
type of nonlinear objective function in combination with the underlying
combinatorial structure. Numerous boundary cases of complexity emerge, which
sometimes surprisingly lead even to polynomial time algorithms.
We also cover recent successful approaches for more general classes of
problems. Though no positive theoretical efficiency results are available, nor
are they likely to ever be available, these seem to be the currently most
successful and interesting approaches for solving practical problems.
It is our belief that the study of algorithms motivated by theoretical
considerations and those motivated by our desire to solve practical instances
should and do inform one another. So it is with this viewpoint that we present
the subject, and it is in this direction that we hope to spark further
research.Comment: 57 pages. To appear in: M. J\"unger, T. Liebling, D. Naddef, G.
Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, and L. Wolsey (eds.), 50
Years of Integer Programming 1958--2008: The Early Years and State-of-the-Art
Surveys, Springer-Verlag, 2009, ISBN 354068274
- …