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This paper presents a systematic robust control framework based

on the structured H∞ approach to address the synthesis of the

atmospheric ascent-flight control system of a launch vehicle. To

introduce this synthesis framework, the control problem is first

formulated to recover the classically-designed baseline rigid-body

controller of the actual VEGA launcher VV05 mission. This legacy

recovery builds the necessary background for a good

understanding of the problem and increases confidence for its

transfer to the Space industry. Subsequently, it is shown how to

systematically augment the robustness of the design from the

synthesis stage against first wind turbulence perturbations and

then parametric uncertainty. The resulting controller is verified via

classical stability margins and robust structured singular value

analyses, and finally validated using nonlinear, time-domain

simulations in a Monte Carlo campaign. It is highlighted that this

robust synthesis framework allows to obtain a controller with

improved robust stability and global performance and more

importantly it provides a more systematic methodology for design.
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1 | INTRODUCTION

The atmospheric flight is the most challenging phase of a launch vehicle mission from a control point of view. The

control of this stage is generally performed by a Thrust Vector Control (TVC) system, which must ensure stability to

guidance commands while satisfying very demanding and tight performance requirements in the presence of external

disturbances, such as wind gusts. Moreover, the control system must be robust against a wide range of parameter

dispersions.

The VEGA launcher uses a classical design framework [1], which has been proved to be successful in all the

VEGA missions performed so far, but several practical limitations are recognized. With the current state-of-practice

design approach, the design has to be performed in several iterative phases and it is very difficult to achieve uniform

stability and performance robustness throughout the entire flight. Furthermore, the control system design is

1
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performed for nominal conditions and consequently, the verification and validation process must rely in an extensive

analysis coverage after design. Unfortunately, due to the wide range of mission configurations and trajectories, the

TVC control laws need to be updated and tailored for each mission.

To overcome these limitations, this article proposes the use of a more systematic control design framework based

on the recently developed structured H∞ approach [2, 3]. Significant contributions have been presented using the

structured H∞ approach in the last decade, resulting already in relevant Space flown missions [4, 5], piloted flight

tests [6] and launch vehicle control design [7, 8, 9, 10].

This synthesis approach allows to perform a methodological control tuning for a specified controller structure.

Therefore, the design can be tailored to the current VEGA TVC architecture. This is quite important since this

framework can be used then as a benchmark to explore the room for improvement with respect to the baseline

controller. Furthermore, the structured H∞ offers more design capabilities than classical techniques. These

improvements include: direct trade-off between robustness versus performance, reduce tuning effort and cost prior

each mission flight, and the capability to directly include system uncertainties in the design.

This article continues the work in [11], where a launcher uncertainty modelling and a systematic analysis of the

VEGA baseline controller was presented. As a follow-up, the aim in here is to provide a detailed understanding on

how the launch vehicle control system design is formulated as a robust control framework and how this enables to

augment the capabilities of the design. First, to increase confidence by Industry and facilitate the transfer of this

technique, the structured H∞ synthesis is used to recover the legacy behaviour of the baseline controller (which was

designedusing a classical design approach). Note, that this is not a simple reverse engineering of the baseline controller,

rather, the recovery is performed based on analytical understanding of the launcher problem and systematic design

weight tuning. The importance of this recovery is that an optimization-based approach is shown to recover exactly

the baseline gains without using that information to initialise the control problem. Then, the level of complexity of

the design interconnection is gradually increased incorporating more information about the system (i.e. statistical

wind models and parametric uncertainties). This design augmentation further extends the synthesis capabilities of

the structured H∞ approach presented in references [7, 8, 9, 10] and is shown to be key in getting the best out of the

control optimisation.

This article is organized as follows. Section 2 introduces the VEGA launcher model as well as the LFT

formulation used to capture the expected variations in the system parameters. Then, the structured H∞ control

design is formulated to recover the legacy behaviour of the baseline controller in Section 3. Subsequently, in Section

4 the design framework is augmented providing the control optimisation with more information about the system.

Finally, Section 5 ends with the conclusions.

2 | VEGA LAUNCHER BENCHMARK

This section describes the VEGA launch vehicle and its atmospheric phase mission configuration. First, the

equations of motion are derived in detail and expressed in a state-space representation. Then, the LFT modeling and

the uncertain parameters used in this work are presented. Finally, the VEGA control architecture for the

atmospheric phase and the main requirements for this first phase of the VEGA mission are introduced.

2.1 | VEGA launcher and mission

VEGA launcher is the new European Small Launch Vehicle developed under the responsibility of the European Space

Agency (ESA) and European Launch Vehicle (ELV) as prime contractor. The launcher has successfully performed

thirteen launches since its maiden flight on 13
t h February 2012. This launcher addresses the small and mini-satellites

market, which covers satellites from 300 kg to 2500 kg. These satellites are used for many specific and Earth

observation missions using mainly Sun Synchronous Orbits (SS0) and Low Earth Orbits (LEO).
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VEGA is a single-body launcher, which follows a four-stage approach formed by three solid propellant motors

(P80, Zefiro 23 and Zefiro 9) providing thrust for the first three stages; and, a bi-propellant liquid engine (LPS) on

the 4
t h stage. All stages are controlled using a TVC system. There is also a Roll and Attitude Control System (RACS)

performing 3-axes control during the ballistic phase and roll rate control during the propelled phases.

2.2 | VEGA launcher model

The motion of the vehicle is described by the standard six-degree-of-freedom equations of motion, which account for

the translational and rotational dynamics of the launch vehicle. The derivation of the equations of motion of a generic

launch vehicle can be found in reference [12].

Due to axial symmetry of the vehicle about the roll axis, the pitch and yaw axes can be assumed uncoupled and

more importantly equal. Consequently, the design and analysis can be performed in a single plane, either the pitch

or the yaw axis. It should be remarked that this strategy is only valid if the roll rate is considered negligible, which is

a standard assumption in launcher vehicle TVC designs and it should be noted that its effects are typically examined

ad hoc [13]. In this work, the VEGA launch vehicle will be examined in the yaw plane.

The translational and rotational equations are expressed in equations 1 and 2 as the sum of forces and moments

from rigid-body (FR ,MR ), flexible-body (FF ,MF ) and nozzle motion dynamics (FN ,MN ). The latter is also known as the

tail-wag-dog effect in the launcher field. In addition, other contributions such as rigid damping and wind disturbances

are included via the corresponding forces and moments.

m Üz = ΣFψ = FR + FF + FN (1)

Iyy Üψ = ΣMψ = MR +MF +MN (2)

wherem is the vehicle mass, Iyy is the lateral moment of inertia, Üz is the linear drift acceleration and Üψ the yaw attitude

acceleration.

Rigid-body dynamics

The rigid-body model describes the vehicle motion due to thrust and aerodynamics. The yaw-plane rigid-body model

is illustrated in Figure 1a. Using small-angle approximations, the rigid-body motion forces FR and momentsMR in the

inertial coordinate frame are given by:

FR = −
(
T − D

)
ψ − Nα −T βψ (3)

MR = NαlCP −T βψ lCG (4)

where T is the gimbaled thrust force, D the aerodynamic drag force and Nα the force gradient with respect to the

angle of attack α . The latter is formed by N = QSr ef CNα , where Q is the dynamic pressure, Sr ef is the launcher

reference area and CNα is the lift coefficient gradient with respect to α . The distance from the center of gravity

(CG) x-coordinate xCG to the aerodynamic center of pressure (CP) x-coordinate xCP is given by lCP while lCG is the

distance from CG to the nozzle pivot point (PVP). The main angles in this dynamic model are the yaw attitude angle

ψ and the actuator deflection in the yaw plane βψ .

Note that the angle of attack α is described by a component with respect to the ground αg r ound and a wind

induced term αw as follows:

α = αg r ound − αw = ψ +
Ûz
V

− vw
V

(5)

where αg r ound = ψ + γ and αw =
vw
V , withV the vehicle velocity with respect to the ground, vw the wind velocity and

γ the drift angle defined as Ûz
V .
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FIGURE 1 VEGA yaw-axis diagram

Nozzle dynamics

Themotion of the gimbaled engines creates inertia forces and torques (the aforementioned tail-wag-dogeffect), which

must be taken into account. The lateral force FN and moment MN due to nozzle dynamics are given by:

FN = −mN lN Üβψ (6)

MN = −
(
mN lN lCG + IN

) Üβψ (7)

where Üβψ is the acceleration of the actuator in the yaw plane, mN is the nozzle mass and lN is the distance from the

nozzle center of gravity to the PVP. Themomentof inertia of the nozzle engine about thePVP is given by IN = Io+mN l
2

N
,

where Io is the moment of inertia of the nozzle engine about its center of gravity.

Flexible-body dynamics

The flexible-body model in Figure 1b represents the elastic behaviour of the launch vehicle. The flexible motion for

the i t h bending mode is represented by the following 2nd order model with a natural frequencyωq i and a low damping

ratio ζq i :

Üqi + 2ζq iωq i Ûqi + ωq
2

i
qi = −T ΨPV P i βψ −

(
mN lNΨPV P i − INΨ

′
PV P i

) Üβψ (8)

where qi is the state of the i t h bending mode, and Ψ
′
PV P i and ΨPV P i are the rotational and translational lengths of

the i t h bending mode at PVP respectively.

In addition, the bending modes produce an additional lateral perturbation and create a local rotation added to the

commanded gimbaled angle βψ . The elastic forces and moments expressed in the inertial coordinate frame are given

by:
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FF = T

k∑

i=1

Ψ
′
PV P i qi (9)

MF = −T
(
lCG

k∑

i=1

Ψ
′
PV P i qi +

k∑

i=1

ΨPV P i qi

)
(10)

Sensors characterization

The sensed values are defined at the node location of the inertial navigation system (INS), which is typically located

in the upper stage at a distance lI N S from CG (see Figure 1a). In addition, the influence of the flexible-body motion

at the sensor location is also considered. The sensed attitude, drift and their derivatives are given by:

ψI N S = ψ −
k∑

i=1

Ψ
′
I N S i qi (11)

ÛψI N S = Ûψ −
k∑

i=1

Ψ
′
I N S i Ûqi (12)

zI N S = z − lI N Sψ +

k∑

i=1

ΨI N S i qi (13)

ÛzI N S = Ûz − lI N S Ûψ +

k∑

i=1

ΨI N S i Ûqi (14)

where Ψ
′
I N S i and ΨI N S i are the rotational and translational lengths of the i t h bending mode at INS.

State-space representation

In this article, the dynamic model is built following reference [14], where the equations of motion are expressed as a

state-space representation suitable for analysis and design. All relevant dynamics are expressed using the state-space

formulation shown in equation 15, where the rigid and flexible-body contributions are expressed separately.

[
ÛxR
ÛxF

]

=

[
AR ARF

AF R AF

] [
xR

xF

]

+

[
BR

BF

]

uLV (15)

yLV =

[
CR CF

] [ xR

xF

]

+ DR uLV

The launch vehicle state-space model uses four rigid-body states given by the drift z , yaw attitude angle ψ and

their derivatives
(
xR =

[
z Ûz ψ Ûψ

]T )
; 2k flexible-body states accounting for k bending modes

(
xF =

[
q Ûq

]T
with

q =

[
q1 · · · qk

]
and Ûq =

[
Ûq1 · · · Ûqk

] )
; five outputs

(
yLV =

[
Qα ψI N S ÛψI N S zI N S ÛzI N S

]T )
, which include the load

performance indicatorQα and the measurements at INS node location for the four rigid-body states; and three inputs(
uLV =

[
βψ Üβψ vw

]T )
. The matrices of the state-space model are given in equation 16.



6 Navarro-Tapia et al.



Ûz
Üz
Ûψ
Üψ
Ûq
Üq



=



0 1 0 0 01k 01k

0 a1 a3 a2 azq 01k

0 0 0 1 01k 01k

0 a4 a6 a5 aψq 01k

0k1 0k1 0k1 0k1 0kk Ik

0k1 0k1 0k1 0k1 aqq aq Ûq





z

Ûz
ψ

Ûψ
q

Ûq



+



0 0 0

ap k2 −a1
0 0 0

k1 k3 −a4
0k1 0k1 0k1

aqβ aq Üβ 0k1





βψ

Üβψ
vw



(16)



Qα

ψI N S

ÛψI N S
zI N S

ÛzI N S



=



0 Q /V Q 0 01k 01k

0 0 1 0 −aΨ′q 01k

0 0 0 1 01k −aΨ′q

1 0 −lI N S 0 aΨq 01k

0 1 0 −lI N S 01k aΨq





z

Ûz
ψ

Ûψ
q

Ûq



+



0 0 −Q /V
0 0 0

0 0 0

0 0 0

0 0 0





βψ

Üβψ
vw



where 0ij is an i × j matrix filled with zeros and Ii is the identity matrix of size i . The rigid-body matrix coefficients are

defined in terms of physical parameters as follows:

a1 =
−N
mV ; a2 = −a1 lCP ; a3 = −acc + a1V ; a4 =

N
IyyV

lCP ; a5 = −a4 lCP ; a6 = a4V ;

k1 = − T
Iyy
lCG ; k2 =

mN
m lN ; k3 =

1

Iyy
(mN lN lCG − IN); ap = −Tm ; acc = T −D

m ;

(17)

Similarly, the flexible-body matrix coefficients are given by:

azq =

[
azq 1 · · · azq k

]
,where azq k =

T
m Ψ

′
PV P k ; aψq =

[
aψq 1 · · · aψq k

]
,where aψq k =

T
Iyy

(Ψ′
PV P k lCG + ΨPV P k );

aqβ =

[
aqβ 1 · · · aqβ k

]T
,where aqβ k = −T ΨPV P k ; aq Üβ =

[
aq Üβ 1 · · · aq Üβ k

]T
,where aq Üβ k = INΨ

′
PVP k −mN lNΨPV P k ;

aqq = d i ag
(
aqq 1 · · · aqq k

)
,where aqq k = −ωq 2k ; aq Ûq = d i ag

(
aq Ûq 1 · · · aq Ûq k

)
,where aq Ûq k = −2ζq kωq k ;

aΨq =

[
ΨI N S 1 · · ·ΨI N S k

]
; aΨ′q =

[
Ψ

′
I N S 1

· · ·Ψ′
I N S k

]
;

(18)

Atmospheric phase evolution

For analysis and design purposes, the launch vehicle model previously presented is used to derive nominal Linear

Time-Invariant (LTI) models at different operating points along the atmospheric flight. In addition, this formulation

can also be used to further derive Linear Fractional Transformation (LFT) and Linear Parameter Varying (LPV) models.

The extension to LFT is presented in Section 2.3, while the augmentation to LPV is not covered in this paper.

In this work, the launch vehicle model is built using the actual VEGA VV05 mission data [15]. During the first

phase, the launch vehicle reaches Mach 5 and approximately 50 km of altitude (see Figure 2a). All physical flight

parameters vary greatly during the atmospheric phase trajectory (i.e. note the dynamic pressure Q in Figure 2b).

Recall that the dynamic pressure evolves as Q =
1

2
ρv 2 . It increases with the square of the velocity, but at a certain

altitude it starts decreasing once the low air density ρ has a predominant effect. Finally, Figure 2c shows the time

evolution of the aerodynamic instability coefficient a6 and the control efficiency parameter k1. These two parameters

are critical in launcher design [1, 16], since they determine the main rigid-body motion dynamics through the relation

Üψ = a6α + k1βψ .
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(a) Mach and altitude versus time (b) Dynamic pressure versus Mach (c) Rigid-body rotational parameters

FIGURE 2 VEGA VV05 mission parameters

To illustrate the effect of the wide dynamic variation of the mission, the frequency responses of the nominal

launch vehicle model are shown in Figure 3a. Note that only the first two bending modes are modelled, which are

the most relevant for design and analysis purposes. It can be seen in Figure 3a that the magnitude evolves with time

presenting different characteristics throughout the atmospheric phase. This plot also shows that the frequency of

each bending mode peak increases with time. This behaviour is also confirmed looking at the pole migration map

shown in Figure 3b. In this case, the launch vehicle model presents eight poles, four rigid-body and four flexible-

body poles accounting for the two bending modes. It should be remarked that, as typical for launcher systems in

open-loop, two of the rigid-body poles are unstable (see right-hand side of Figure 3b). The main stabilisation control

problem comes from the larger unstable pole, which is mainly governed by the rotational motion of the vehicle and it

is approximately placed at s =
√
a6. This pole highly varies with time and since a6 is proportional toQ (see Figure 2), it

reaches its maximum value around the maximum dynamic pressure region (t = 50-60 s). Besides the stabilisation issue,

the control problem is also very challenging from a performance point of view because the launch vehicle encounters

the highest aerodynamic loads around this region. This demands more control actuation in order to counteract the

torque generated by the structural loads. With respect to the second unstable pole, which is closer to the origin, it is

mainly caused by the translational motion of the vehicle and it requires less control effort to stabilise due to its slow

dynamics behaviour.
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2.3 | LFT modelling

The Linear Fractional Transformation (LFT) theory allows to consider plant uncertainties for analysis and design

purposes. The LFT formulation is a suitable approach to model the known unknowns of the system and it certainly

provides an additional level of insight at the design stage to provide good robustness against system uncertainties.

In this section, the LFT modelling for the launcher and the actuation chain models (TVC actuator and delay) is

described.

VEGA launch vehicle LFT model

The LFT model of the VEGA launcher is derived by augmenting the LTI nominal model presented in Section 2.2 with

additive parametric uncertainties. This type of uncertainty is generally defined as x = x 0 +σx δx , where x
0 represents

the nominal value of parameter x , σx is the level of uncertainty and δx is a norm-bounded uncertainty flag ( | |δx | |∞ ≤ 1).

Standard LFT modelling approaches generally define a different uncertainty flag for each variable of the model [11].

This strategy results in highly accurate LFT models but also of high complexity (in terms of number of uncertain

parameters used and their repetitions).

However, for robust design and particularly for robust analysis (i.e. structured singular value, IQC), it is desirable

to employ LFT models with low complexity. In that regard, the approach used in this work employs a reduced set

of uncertainty flags that captures the variability of the system parameters with respect to the nominal flight while

reducing the complexity of the model. Thus, the uncertainty model is re-defined as x = x 0 + σ#x δ# , where σ
#
x is the

variability level of parameter x with respect to the flag δ# . This subset of uncertainty flags are identified through a

time-domain sensitivity analysis using the high-fidelity, nonlinear 6 degrees-of-freedom simulator VEGACONTROL

[17]. A more detailed description of this modelling approach can be found in [18].

Table 1 shows the list of uncertain parameters. The selected parametric set is formed by 6 rigid-body scattering

flags: combustion time δdT c , atmospheric density δρ , and dispersions and uncertainties for the normal aerodynamic

coefficient (δd i spCN , δuncCN ) and the center of pressure x-coordinate (δd i spXCP and δuncXCP ); and 5 flexible-body

scattering flags: bending frequencies δωq and rotations and translations at PVP and INS (δΨPV P , δΨ′
PV P
, δΨI N S , δΨ′

I N S
).

The nominal values and uncertainty levels of each rigid-body parameter are obtained from nonlinear time-domain

simulations using the VEGACONTROL simulator [18]. On the other hand, the corresponding values for the flexible-

body parameters are directly extracted from themission data used by VEGACONTROL. Note that the implementation

and definition of the uncertain parameters is performed using the MATLAB Robust Control Toolbox [19].

TABLE 1 List of uncertain parameters for the VEGA launch vehicle LFT model.

Rigid-body uncertain parameters Flexible-body uncertain parameters

m = m0
+ σdT cm δdT c

xCG = x 0CG + σdT cXCG
δdT c

Iy y = I0y y + σ
dT c

Iy y
δdT c

CN = CN 0
+ σ

d i spCN

CN
δd i spCN + σuncCNCN δuncCN

xCP = x 0
CP

+ σ
d i spX cp

CN
δd i spXCP + σ

uncXCP

XCP
δuncXCP

T = T 0
+ σdT cT δdT c

V =V 0
+ σdT cV δdT c

Q = Q 0
+ σdT cQ δdT c + σ

ρ

Q
δρ

acc = acc0 + σdT caccδdT c + σ
ρ

acc δρ

ωq i = ωq
0

i
+ σ

ωq

ωq i
δωq

ΨPV P i = ΨPV P
0

i + σ
ΨPV P

ΨPV P i
δΨPV P

Ψ
′
PV P i

= Ψ
′
PV P

0

i
+ σ

Ψ
′
PV P

Ψ′
PV P i

δΨ′
PV P

ΨI N S i = ΨI N S
0

i
+ σ

ΨI N S

ΨI N S i
δΨI N S

Ψ
′
I N S i

= Ψ
′
I N S

0

i
+ σ

Ψ
′
I N S

Ψ′
I N S i

δΨ′
I N S

with i = 1...k



Navarro-Tapia et al. 9

The VEGA LFT model can be represented using the so-called upper LFT interconnection shown in Figure 4. This

feedback representation is described by equation 19, where Fu denotes the upper LFT operator, ∆LV is the

uncertainty matrix and GLV (s) defines the known part of the launch vehicle model. Note that GLV (s) is partitioned
in four submatrices: GLV 22 represents the nominal plant and GLV 12, GLV 21 and GLV 22 describe how the nominal

plant is affected by the uncertainty matrix ∆LV .

Fu
(
GLV (s),∆LV

)
= GLV 22 +GLV 21∆LV

(
I −GLV 11∆LV

)−1
GLV 12 (19)

∆LV

uLV yLV
GLV (s)

FIGURE 4 VEGA LFT model

The VEGA LFTmodel has dimension 95 (i.e. number of repetitions). It should be remarked that prior to the design

and analysis stages, the model is simplified using LFT reduction methods and finally results in a smaller LFT dimension

of 41. Also note that ∆LV is defined within the uncertainty set ∆LV described in equation 20, where I♭ is the identity

matrix of size ♭, and represents the number of repetitions of each uncertain parameter.

∆LV =

{
d i ag (δdT C I14, δρ I3, δd i spCN I2, δuncCN I2, δd i spXCP I3, δuncXCP I3, δωq I4, δΨPV P

I3, δΨ
′
PV P
I3, δΨI N S

I2, δΨ
′
I N S

I2);

δ# ∈ Ò; | |δ# | |∞ ≤ 1

} (20)

To illustrate the effect of model perturbations on the launch vehiclemodel, the frequency response of the nominal

VEGAattitude channel at t = 50 s (in red) and 1000 random scattered responses are shown in Figure 5a. It is shown that

the LFT model defines dispersions for low frequencies (rigid-body dynamics) and also for high frequencies (flexible-

body dynamics).
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Delay LFT model

This LFT model characterizes the delays originated by the digital processing of the on-board computers (12 ms),

sensors (12 ms) and TVC actuators (15 ms). All those contributors are modelled through a 2
nd order Padé

approximation using an uncertain delay defined as τ = τ0 + στδτ (with τ0 = 39 ms and στ = 10 ms). Similarly, this

model can be expressed as an upper LFT interconnection Fu
(
Gτ (s),∆τ

)
, where Gτ (s) is described in equation 21 and

∆τ ∈ ∆τ with ∆τ =
{
δτ I2; δτ ∈ Ò; | |δτ | |∞ ≤ 1

}
. The bode diagram with the nominal and dispersed responses is

shown in Figure 5b.

Gτ (s) =
s2τ2 − s6τ + 12

s2τ2 + s6τ + 12
(21)

TVC Actuator LFT model

The TVC actuator model is derived to fit the actuator dynamics obtained from hardware-in-the-loop simulations. This

model is also described as an upper LFT interconnection Fu
(
GTVC (s),∆TV C

)
, where ∆TVC ∈ ∆TVC . The reader is

referred to reference [11] for a detailed description of this LFTmodel. The bode plot presenting the nominal frequency

response and the LFT coverage is illustrated in Figure 5c.

2.4 | VEGA Control System

The VEGA control system is comprised of two subsystems. First, the TVC subsystem uses measurements from the

INS to compute the necessary nozzle deflections to follow the attitude commands from the guidance function. These

nozzle deflections are then delivered to two orthogonal nozzle electro-mechanical actuators (lanes A and B ). Second,

the RACS consists of six thrusters to control the roll rate and perform a fine three-axis attitude control during the

ballistic phase.

During the atmospheric phase, the guidance is performed in open-loop configuration following a pre-programmed

trajectory. This flight strategy leads to deviations from the nominal trajectory, which are corrected in upper phases.

In addition, due to the high moment of inertia of the launch vehicle along the first phase, the RACS is not able to set

the roll rate to zero. As a consequence, the roll rate is only limited, which means the RACS will only act if the roll rate

is over a certain threshold.

The VEGA TVC control architecture is shown in Figure 6 [1]. Due to axial symmetry, the same TVC controller is

used in pitch and yaw channels. Thus, for each channel, the control law is based on a PD controller to stabilize the

launcher’s attitude, a lateral control feedback to limit the drift of the vehicle and a set of H (s) filters with different

purposes: H1(s) improves the low-frequency rigid-body stability margins; H2(s) performs a derivative action to

compute the attitude rate error signal Ûψe ; H3(s) notches the first bending mode and H4(s) attenuates the upper

bending modes.

H1

H2

H3

H4

H4

Kpψ

Kd ψ

Kz

K Ûz

ψe

Ûψe

ze

Ûze

βc

FIGURE 6 VEGA TVC Control Architecture
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As aforementioned, in order to cope with the large dynamical system variations, different controllers must be

designed along the atmospheric trajectory at distinct operational design points (i.e. every 10 seconds for the VEGA

launcher). Then, the controller gains and filters are discretised and scheduled based on the non-gravitational velocity.

In this work, the baseline controller used is that for the VEGA VV05 mission.

2.5 | Atmospheric phase VEGA requirements

The TVC subsystem must ensure stability to guidance commands while satisfying very demanding and tight

performance requirements in the presence of external disturbances. Furthermore, during the maximum dynamic

pressure region, the angle of attack α must be kept small in order to reduce the structural loads on the launch

vehicle. The most relevant specifications for the atmospheric phase are listed in Table 2.

TABLE 2 VEGA stability and performance requirements for the atmospheric phase

Requirements Metrics Bounds

Stability Requirements

Rigid-body margins

LF-GM
Nominal ≥ 6 dB

Dispersed ≥ 0.5 dB

DM
Nominal ≥ 100 ms

Dispersed ≥ 40 ms

HF-GM
Nominal ≤ - 6 dB

Dispersed ≤ - 3 dB

Flexible-body margins

GMf

Nominal ≤ - 3 dB

Dispersed ≤ - 3 dB

DMf

Nominal ≥ 50 ms

Dispersed ≥ 20 ms

Performance Requirements

Load performance Qα <Qα envelope

Lateral control performance
z <500 m

Ûz <15 m/s

Actuation performance β <6.5 ◦

Stability requirements are distinguished between rigid- and flexible-body stability margins for nominal and

scattered conditions. On the one hand, three rigid-body margins are considered: low-frequency gain margin

(LF-GM), delay margin (DM) and high-frequency gain margin (HF-GM). On the other hand, a gain margin (GMf ) and a

delay margin (DMf ) are defined for gain- and phase-stabilized bending modes respectively. Note that phase margins

are expressed as the equivalent delay at the frequency at which the margin is computed.

Performance requirements are verified via time-domain Monte-Carlo simulations using the nonlinear

high-fidelity simulator VEGACONTROL (developed by ELV, and proven to be an industrial-level validation

benchmark). The different performance metrics must remain below given bounds in the face of parameter

dispersion and disturbances such as noise and wind. The loads requirement is expressed as the product of the

dynamic pressure (see Figure 2b) and the angle of attack, Qα . This metric must be below a given profile versus

Mach. Furthermore, the lateral displacement with respect to the reference trajectory frame shall be limited in the

atmospheric phase (both in position z and velocity Ûz ). Finally, the actuator effort shall also be limited to avoid

saturation and reduce TVC consumption.
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3 | VEGA CONTROL LEGACY RECOVERY

In this section, the structured H∞ synthesis technique is applied to the actual VEGA VV05 mission data to recover

the baseline rigid-bodymission controller. The aim is to provide a first step towards a robust design framework, which

is more methodological and offers more design capabilities than the classical design techniques. This recovery also

facilitates the transfer of technology to industry as it allows to build exactly from their architecture, and arrive to the

same result, strongly building confidence on the process. The VEGA legacy recovery was explored in [20]. However,

in this paper, a more suitable closed-loop interconnection for design is proposed. In addition, the main closed-loop

transfer functions are analysed analytically to give an understanding on the constraints imposed by the controller

structure and facilitate the weighting function selection.

Firstly, the control synthesis is formulated in a robust control design framework. Then, key guidelines on the

weighting function selection are provided. Finally, the design is exemplified in a linear design point and validated

using VEGACONTROL simulator.

3.1 | Problem formulation

The design model used in this work is illustrated in Figure 7. Note that the main input-output channels of the closed-

loop system are scaled by frequency-domain weighting functions represented by shaded blocks. These weighting

functions are chosen to impose control requirements on the design and its selection will be discussed in Section 3.2.

K Gτ (s) GTV C (s)
GLV (s)

dc =



ψc

Ûψc
zc

Ûzc

d
′
c Wc

dn =



ψn

Ûψn
zn

Ûzn



d
′
n Wn

d
′
w

Ww

eψe = ψe

e
′
ψeWψe

eβc = βc

e
′
βcWu (s)

eQα = Qα

e
′
QαWQα

eINS =



ψI N S

zI N S

ÛzI N S



e
′
INS

WI N S (s)



ψI N S

ÛψI N S
zI N S

ÛzI N S



u βcτ
βψ
Üβψ

vw

Ûψe
ze

Ûze

FIGURE 7 Closed-loop diagram for design

It should be mentioned that the closed-loop diagram illustrated in Figure 7 differs from the design

interconnections employed in previous works [20, 21], which are based on the real implementation of the VEGA

TVC control architecture (see Figure 6) where the attitude error rate signal Ûψe is obtained by processing ψe through a
pseudo-derivative filter H2(s). Differently, the design model shown in Figure 7 extracts Ûψe directly from the launch

vehicle model GLV (s). In practice, this additional measurement can be provided by VEGA’s INS. This new design

architecture offers three main advantages:
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1) it simplifies the design diagram, since the pseudo-derivative filter H2(s) is no longer needed;

2) as a consequence, the size of the closed-loop system is reduced. This also leads to a reduction of the controller

size when using non-structured synthesis techniques such as the standard H∞ or LPV techniques;

3) finally, this configuration provides better insight into the contribution of each rigid-body gain on the actuation

channel. For instance, the effect of Kpψ and Kd ψ is merged in one single channel from ψe in the closed-loop

architecture used in previous works, while in the proposed interconnection (see Figure 7), each rigid-body gain

has its own channel.

The closed-loop interconnection is composed of 4 main blocks: GLV (s) is the nominal VEGA launcher model,

which accounts for rigid-body and nozzle dynamics; K is the controller block, which is composed of the rigid-body

gains
(
K =

[
Kpψ Kd ψ Kz K Ûz

]T )
; GTV C (s) and Gτ (s) represent the nominal actuator dynamics and nominal

delay of the system. It should be remarked that the aim is to reproduce the classical design framework, which is

performed for nominal conditions. Thus, no uncertainties are used at this design stage. Moreover, since the focus of

the design is on the rigid-body gains, GLV (s) does not include the flexible-body motion and the controller K is only

composed by the rigid-body gains (the set of filters H (s) is not used during this design stage, although they are added
for the time-domain validation stage).

The design architecture presented in Figure 7 can also be expressed as a standardH∞ interconnection (see Figure

8), where the main closed-loop interconnections are re-arranged into the generalised plant P (s), and the input and

output weighting functions are expressed asWi n andWout respectively. The generalised plant P (s) has a set of inputs
formed by the commands, wind disturbance and sensor noise inputs

(
d =

[
dc
T

dw dn
T
]T )

and a set of outputs
(
e =

[
eψe eINS

T eQα eβc

]T )
, which have been chosen to cope will all the requirements presented in Table 2. In

particular, e is formed by the attitude error ψe , the (attitude, drift and drift-rate) INS measurements at node location,

the load performance requirement Qα and the commanded actuator deflection βc . Finally, the scalar u denotes the

controller output, while the controller input is represented by the vector y =

[
ψe Ûψe ze Ûze

]T
.

P (s)

K

e′ed′ d

u y
P̃ (s)

Wi n Wout (s)

FIGURE 8 H∞ interconnection

The transfer function from the inputs d to outputs e is generally defined as Ted = Fl
(
P (s),K

)
, where Fl denotes

the lower LFT. In this context, the relation between outputs and inputs can be analysed using the following matrix

notation:



ψe

ψI N S

zI N S

ÛzI N S
Qα

βc

y



=



Sψ −Gwψ Tψ Kpψ

Tψ Gwψ −Tψ Guψ

Tz Gwz −Tz Guz

T Ûz Gw Ûz −T Ûz Gu Ûz

TQα GwQα −TQα GuQα

K Sy −KGwy −K Sy I

Sy −Gwy −Ty K





dc

dw

dn

u



(22)
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where S# and T# are the sensitivity and complementary sensitivity functions of the corresponding channel #. S# is

defined as S# = (I +G#K )−1 andT# = I −S# . In addition, Gw# andGu# represent the transfer functions from the wind

disturbance and controller output to the performance indicator #, respectively.

As mentioned before, the control problem is formulated by scaling the generalised plant P (s) through frequency-
domain input and output weighting functions forming the augmented generalised plant P̃ (s) (see Figure 8). The input
weighting functions are tuned to scale the closed-loop dynamics at the input side with respect to their expected

variations
(
Wi n = d i ag (Wc ,Ww ,Wn )

)
. On the other hand, the output weighting functions are shaped to specify the

desired requirements
(
Wout = d i ag (Wψe ,WψI N S ,Wz ,W Ûz ,WQα ,Wu )

)
. Tracking objectives and stability requirements

are set on the attitude channel byWψe andWψI N S . Similarly,Wz andW Ûz address the lateral control objectives while

WQα adds constraints to satisfy the load requirements. Finally, the actuation performance is limited byWu . Although

not implemented in this work, it should be mentioned that other requirements, such as actuation rate or angular

acceleration, can also be considered in the design.

In preparation for the subsequent weight design, all transfer functions in equation 22 have been analytically

derived with the aim of identifying key design parameters and facilitating the weighting function selection. However,

due to the high order of those transfer functions, it was not possible to perform the same analytical study carried out

in [16], where a simpler model of the launch vehicle was analysed in terms of classical design parameters such as the

natural frequency ωn and the damping ratio ζ.

Nevertheless, all transfer functions were analysed in terms of low- and high-frequency asymptotes (see Table 3).

This analysis shows that, in addition to the intrinsic physical limitations of the launch vehicle, the structure of the

controller also introduces constraints to the system. This study is also very relevant because it gives information on

how to shape the weights and it will be used in Section 3.2 for the weighting function selection.

TABLE 3 Low- and high-frequency asymptote analysis.

Transfer function ω = 0 ω =∞

ψe/ψc 1 1

zI N S/ψc Kpψ/Kz 0

zI N S/ Ûψc Kd ψ/Kz 0

zI N S/zc 1 0

zI N S/ Ûzc K Ûz /Kz 0

βc/ψc 0 Kpψ

βc/ Ûψc 0 Kd ψ

Finally, the structured H∞ optimisation consists of finding a stabilizing structured controller K that minimises the

H∞ norm of the cost function given below in equation 23. The H∞ norm represents the maximum singular value of

the system (σ ), which is the generalisation of the eigenvalue for multivariable systems. It can also be interpreted as

the maximum gain or amplification of energy from the weighted generalised inputs d′ to the weighted generalised

outputs e′.

min
K

| |Te′d ′ (s) | |∞ = min
K

max
ω∈Ò

σ
(
Te′d ′ (j ω)

)
= sup
d ′,0

| |e′ | |2
| |d ′ | |2

(23)
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This optimisation process is implemented in MATLAB through the command hinfstruct [22]. It should be

remarked here that the structured H∞ is a non-smooth and non-convex optimiser. This implies the optimisation can

be drastically affected by the choice of the controller structure as well as the number of tunable parameters and

their initial guesses or initialisations. It is important to remark that the control problem was not initialised using the

baseline knowledge (i.e. the baseline controller gains) in order not to influence the optimisation. Rather, it was

configured to perform multiple optimisations from a set of 5 random starting points to mitigate the local-minima

nature of the structured H∞ optimisation.

3.2 | Weighting function selection

The selection of the weighting functions generally implies an iterative process with several heuristic steps to obtain

an adequate set of weights. Nevertheless, in this section, some simple guidelines are provided to improve the

understanding on how to express the design specifications in the frequency domain. Those guidelines are mainly

based on physical properties of the launch vehicle and limitations imposed by the controller structure (see Table 3).

Alternatively, the weighting function selection for the control legacy-recovery process may also be performed

based on the inverse of the closed-loop transfer functions using the baseline controller. This reverse-engineering

process may result in a faster approach, nevertheless, it would require more complex weighting functions, and more

importantly for the scope of this recovery exercise, it does not provide any analytical insight into the system

limitations (physical and controller). Nonetheless, note that the baseline closed-loop transfer functions were

subsequently employed as reference to fine-tune the analytically-selected weighting functions in order to exactly

recover the baseline controller.

In the standard H∞ framework, the order of the controller equals the order of the scaled generalised plant P̃ (s),
thus, the order of the weighting functions is traditionally kept low to avoid high-order controllers. On the other

hand, using the structured H∞ technique, this restriction is no longer applicable since the controller size is fixed.

Nevertheless, for ease of tuning and simplicity, constant and first order weighting functions are used.

3.2.1 | Input weighting functions

Proper scaling of the input channels is key for a good control design, particularly working with multivariable systems.

It is also relevant the use of suitable units to balance the different channels (e.g. expressing angles in degrees instead

of radians).

Firstly, the commanded input matrixWc is described in equation 24. In this work,Wψc has been fixed to consider

a maximum attitude angle command of 1 deg andW Ûψc is tuned to balance the attitude and attitude rate channels.

Similarly,Wz c is adjusted to balance the lateral feedback channels. Using the information from Table 3, a suitable

scaling is achieved using the following relations: W Ûψc ≈ Kpψ/Kd ψ andWz c ≈ K Ûz /Kz . Those weights were used as

initial values and then a manual fine-tuning was required to recover the baseline controller at every design point.

Wc =



π
180
Wψc 0 0 0

0
π
180
W Ûψc 0 0

0 0 Wz c 0

0 0 0 W Ûz c



(24)

The input disturbance weightWw aims to scale the wind channel with respect to the maximum expected wind

speed. For the legacy recovery, this weight has been fixed for a maximum wind of 10 m/s.
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Finally, the input noise weightWn models the sensor noise of each feedback measurement (see equation 25).

The expected noise levels from the IMU sensor used by VEGA areWψn = 0.02 deg andW Ûψn = 0.1 deg. For the lateral

deviation measurements, the estimated errors provided by the guidance function areWz n = 0.01 m for the drift and

W Ûz n = 0.001 m/s for the drift-rate.

Wn =



π
180
Wψn 0 0 0

0
π
180
W Ûψn 0 0

0 0 Wz n 0

0 0 0 W Ûz n



(25)

3.2.2 | Output weighting functions

Wψe andWψI N S (s) enforce tracking and stability requirements.Wψe
−1 andWψI N S (s)

−1 bound respectively the classical

sensitivity and complementary sensitivity functions of the yaw attitude channel. The two weighting functions are

given by:

Wψe =
180

π

(
| |Sψ(s) | |∞

)−1
(26) WψI N S (s) =

180

π

(
hψs + ωψ

s +
ωψ
lψ

)−1
(27)

where | |Sψ (s) | |∞ is the maximum peak of the sensitivity function of the attitude channel, lψ and hψ are the low- and

high-frequency asymptotes of a low-pass filter and ωψ is the filter bandwidth.

Generally,Wψe
−1 is chosen as a high-pass filter, with a small low-frequency asymptote to keep low the steady-

state tracking error. Nevertheless, due to the inclusion of the lateral control feedback, the steady-state tracking error

of the system is fixed to 1 (see Table 3). Thus, in this work, Sψ (s) is only limited by a constant weighting function

to keep small the maximum peak of the sensitivity function to assure good stability margins. Recall that | |Sψ (s) | |∞
directly yields a lower bound on the classical stability gain margin (GM ) and phase margin (PM ) through the following

relations [23]:

GM ≥
| |Sψ (s) | |∞

| |Sψ(s) | |∞ − 1
(28) PM ≥ 2 arcsin

(
1

2 | |Sψ (s) | |∞

)
(29)

It is also important to note that, as described in equation 27,WψI N S (s)
−1 is shaped instead as a low-pass filter.

The filter bandwidth ωψ should be sufficiently high to have an adequate attitude tracking but low enough to avoid

interactions with the first bending mode. For the recovery of the baseline controller, ωψ has been fixed to 20 rad/s.
Note that this value has been chosen much higher than the attitude control bandwidth to avoid over constraining the

optimisationprocess. In addition, hψ is set to a gain of -60 dB to attenuate the control performance at high frequencies

and minimise the noise contribution. Finally, in order to reduce the number of weight parameters to tune during the

design process, lψ equals | |Sψ (s) | |∞.
WzI N S andW ÛzI N S specify the lateral control requirements on the design process. Their inverses must refer to the

maximum drift and drift rate output expected values. Note that the ratio Kpψ/Kz imposes a lower bound forWzI N S
−1

(see Table 3).

WzI N S =

(
zmax

)−1
(30) W ÛzI N S =

(
Ûzmax

)−1
(31)

The load requirements are set through the weighting functionWQα . In this case,WQα
−1 bounds the maximum

angle of attack as follows:

WQα =
180

π

(
Qαmax

)−1
(32)
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Finally,Wu (s) adds constraints on the actuation performance. In this case, Wu
−1 is shaped as a low-pass filter

given by:

Wu (s) =
180

π

( hu s + ωu
s +

ωu
lu

)−1
(33)

where lu and hu are the low- and high-frequency asymptotes and ωu is the actuation bandwidth. lu is tuned to be

the maximum expected actuator deflection βmax at the design point and the actuation bandwidth has been fixed to

ωu = 30 rad/s. Also note that the controller structure fixes the value of hu to Kpψ .

3.3 | StructuredH∞ Linear Design Point

In this section, the baseline controller recovery using the structured H∞ synthesis approach is illustrated at a linear

design point, t = 50 s (i.e. around maximum dynamic pressure).

Following the guidelines presented in Section 3.2, the weighting functions are tuned in an iterative process to get

the same rigid-body gains as the baseline controller employed in the VEGA VV05 mission. Specifically, the rigid-body

gains obtained present less than 1% of error with respect to the baseline controller gains.

To validate the design, the bode plots of the system using the baseline controller (in solid black) and the structured

H∞ design (in dashed blue with square markers) are shown in Figure 9. This plot also illustrates in green the inverse of

the output weighting functions used for this design. It should be remarked that the frequency responses have been

multiplied by the input weighting functions and that only a subset of channels are shown for ease of visualization.
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FIGURE 9 Bode plots comparison at t = 50 s: baseline controller Vs structured H∞ controller

Looking at Figure 9, it can be observed that the baseline controller is successfully recovered at t = 50 s. This figure

shows clearly the upper bound defined by the weighting functions.
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The same design procedure is repeated for the rest of the linear design points along the atmospheric flight. Due

to the wide dynamic variation of the launch vehicle model, a different set of weighting functions is needed to recover

the baseline controller at each grid design point (but note that the weights used for the design at t = 50 s are used as

the basis for the weights in all the other points). In total, 9 structured H∞ controllers have been synthesized starting

at t = 5 s and then at every 10 seconds between the flight instants t = 20 s and t = 90 s. Similarly, in all the design

points, the rigid-body gains synthesized exhibit less than 1% of error with respect to the baseline controller gains.

Although not covered in this paper, the proposed recovery design methodology can also be used to recover the

baseline bending filters. Nonetheless, it is highlighted that this task would be much more complex for several reasons.

First, it would be necessary to parametrise the bending filters to apply the structured H∞ optimisation technique.

In addition, some of the weighting functions would have to be of higher order to shape the filters’ dynamics, which

impliesmore tuning effort to achieve a total recovery. A good example of how the proposed structuredH∞ framework

can be augmented to jointly design the rigid-body controller and the bending filters is given in reference [24].

3.4 | Nonlinear verification

Finally, the 9 structured H∞ controllers are scheduled, implemented and verified in the nonlinear high-fidelity

simulator VEGACONTROL. The final scheduled structured H∞ controller is obtained using the same scheduling

scheme employed for the VEGA baseline controller, that is through linear interpolation using the non-gravitational

velocity as the scheduling parameter. Although not used in the design process, the flexible-body motion of the

vehicle as well as the H filters of the TVC control architecture (see Section 2.4) are implemented for the nonlinear,

time-domain simulations. Also note that the estimated wind from the VEGA VV05 mission is used in this analysis.

Figure 10 shows the load performance indicator Qα for nominal flight conditions (those encountered during the

selected mission, i.e. VV05 [15]). It is seen that the loads suffered by the launch vehicle during this mission using the

baseline controller (in solid black) are below the given Qα safety envelope depicted in dot-dashed red for the whole

atmospheric flight. Nonetheless, a noticeable peak is observed around Mach 3, which is close to the safety envelope.

In essence, this peak is produced by a strong wind gust encountered around t = 60 s.
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FIGURE 10 VEGA legacy recovery nonlinear validation
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Figure 10 clearly illustrates that the control behaviour of the scheduled baseline controller for the VEGA

atmospheric phase is successfully recovered using the structured H∞ synthesis technique (again, no discernible

difference is observed in the responses). As a summary, it is noted that this legacy-recovery design process is not

trivial and it requires a good understanding of the physics of the launch vehicle as well as the constraints introduced

by the controller structure into the system. For the latter, it is paramount to reconcile the closed-loop transfer

functions of the system with the frequency-dependent weighting functions (i.e. via the asymptote analysis

performed in Section 3.1). Nonetheless the difficulty, this successful demonstration greatly advances the case for

the use of this more methodological robust design tools over the classical design approach (especially, or at least, for

launcher TVC design).

4 | CONTROL DESIGN AUGMENTATION

This section explores the room for improvement offered by the structuredH∞ design framework as it allows providing

the optimiser with more information about the system. First, the impact of including a wind turbulence model in the

design process is analysed and accounted for in the design. Then, the design is augmented by taking parametric

uncertainties into account.

4.1 | Wind generator augmentation

The effect of wind disturbance is a critical factor for any launcher atmospheric phase [25, 26]. It generally produces a

significant degradation in the global performance of the mission and it induces structural loads which can cause loss

of vehicle. In this regard, the controller must minimize the contribution from the wind disturbance while satisfying

stability and performance requirements (see Section 2.5).

In this section, the wind channel transfer functions are analysed to have a better understanding on the controller

capabilities to reduce the disturbance action. Then, the structured H∞ design framework presented in Section 3 is

augmented by incorporating a wind turbulence model, which accounts for real wind levels in the controller synthesis.

Finally, a nonlinear benchmark is presented to evaluate the influence of this proposed wind model.

4.1.1 | Wind disturbance analysis

Classical control design techniques generally do not implicitly consider any wind model during the design process.

The wind disturbance rejection is normally evaluated using an extensive nonlinear analysis coverage with a set of

different wind profiles. Differently, the robust control design framework presented in Section 3 allows to tackle the

design considering multiple competing system requirements while also taking the wind disturbance contribution into

account. This is quite relevant for design, since the wind rejection performance drives the main traditional control

strategies considered in the literature for launch vehicle control synthesis (i.e. attitude-error-minimum, drift-minimum

and load-minimum) [26, 27, 28, 29]. Those control modes attempt to cancel out the steady-state values of each of

those three performance metrics from the wind disturbance input.

To evaluate the characteristics of the steady-state wind disturbance rejection for the VEGA launcher, the transfer

functions from the launcher wind input vw have been derived and their low-frequency asymptotes are given in Table 4.

It is critical to notice that only the steady-state value of the drift-wind channel can be minimised (by using a low gain

ratio Kpψ/Kz ). Note that the minimum-drift condition can be achieved using Kpψ = − lCP
lCP +lCG

T−D
T , but this choice

leads to an unstable response. Differently, the other steady-state values only depend on physical parameters of the

launch vehicle, and thus they cannot be set to zero or controlled in any way. This feature can only be enhanced by

including new sensors and feedback loops to the TVC control system (i.e. angle of attack), which implies changing the

control law.
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TABLE 4 Low-frequency asymptote analysis of the wind disturbance channel.

Transfer function ω = 0

ψI N S/vw (s) 1

V

N (lCP +lCG )
N (lCP +lCG )+lCG (T −D )

zI N S/vw (s) 1

V

KpψT N (lCP +lCG )+N lCP (T −D )
KzT [N (lCP +lCG )+lCG (T −D )]

Qα/vw (s) −QV
lCG (T −D )

N (lCP +lCG )+lCG (T −D )

βc/vw (s) − 1

V
1

T

N lCP (T −D )
N (lCP +lCG )+lCG (T −D )

Despite the fact that most of the wind steady-state responses cannot be controlled for the VEGA launcher, the

transient response also plays a significant role on the system. In this regard, it is very important to scale properly

the wind channel with respect to the wind levels that the launcher will encounter in the real flight. In the authors’

opinion, the use of statistical wind models in the design process will certainly guide the optimiser to obtain an overall

better disturbance rejection performance. Next, a wind turbulence model is proposed to be considered in the design

process.

4.1.2 | Wind generator description

In this study, following the criteria found in [30] and the work of [11], the wind disturbance velocity vw is modelled

by coloring white noise nw through a Dryden filter with the following transfer function:

Gw (s) =
vw

nw
(s) =

√
2

π

V (h)−vwp (h)
L(h) σ2(h)

s +
V (h)−vwp (h)

L(h)

(34)

where L(h) and σ(h) are the turbulence length scale and the standard deviation versus altitude h. The values of L(h)
and σ(h) are given in tabular-form in [30] for light, moderate and severe turbulence. Finally, the build-up wind speed

profile envelope vwp (h) is defined in equation 35 and illustrated in Figure 11a. This altitude profile is defined by an

exponential leading edge and a 1-cosine shape trailing edge for low and high altitudes respectively. For intermediate

altitudes, the profile is described by a constant gust amplitude A. In this work, the envelope is characterized for

the first 20 km of altitude (Hf = 20000 m), which is the altitude range where the wind disturbance plays the most

significant role in performance metrics such as Qα . The profile amplitude is set to A = 14 m/s and the thickness of

the initial and final edges are H l = 2000 m and Hu = 2500 m. The previous values have been chosen to fit the model

with a range of different wind profiles (see Figure 11b).

vwp (h) =




10A[( hH l )
0.9 − 0.9 h

H l
] for 0 ≤ h < H l
A for H l ≤ h ≤ Hf − Hu

A
2
[1 − cos( πHu (h − Hf ))] for Hf − Hu < h ≤ Hf

(35)

As shown in [11], Gw (s) combined with the planar wind steady-state profile vwp (h) is able to cover the estimated

wind encountered in the VEGA VV05 mission. This analysis is extended here to other different winds (see Figure

11b). It is shown that a set of 1000 random samples of this wind configuration (depicted in grey) covers the range of

4 different real wind data (extracted from real measurements taken at the VEGA launch site).
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FIGURE 11 Design wind speed profile envelope

Gw (s) has been successfully used for analysis in [11]. The aim here is to use the model for design, providing the

optimiser information about the frequency content of the wind disturbance. This characteristic is very important in

frequency-domain synthesis techniques such as the structured H∞ technique.

The wind model is implemented at the wind disturbance input of the launch vehicle model. Using this

configuration, the input disturbance weight Ww now scales the Gaussian process described by the Dryden filter

Gw (s). This input weighting function is defined asWw = σw , where σw is the standard deviation of the unitary white

noise input nw . In this work, σw is assumed to be 3 so that 99.7% of the wind levels are considered in the design.

4.1.3 | Wind generator assessment

To evaluate the influence of the wind model Gw (s) on design, two different controllers are synthesized using the

structured H∞ technique, one for moderate and the other for severe wind levels. Both controller designs are

performed using the same weighting functions (those used to recover the baseline controller in Section 3) at the

same 9 operating points. Note that in these designs only the rigid-body gains are optimised, while the bending filters

are kept the same as the baseline controller.

The synthesized rigid-body gains are compared with the baseline in Figure 12. Note that the values in the y axis

are not provided for confidential reasons. Looking at Figures 12a and 12b, it is observed that the attitude gains of

the three designs present the same trend but with slightly different values. It is also shown that the optimiser yields

higher lateral feedback gains for the severe-wind design than for the other two cases (see Figure 12c and 12d).
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FIGURE 12 Time-evolution of the synthesized rigid-body gains
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In particular, the increase of K Ûz reduces the wind disturbance transient energy of the Qα channel (recall from

equation 5 that the angle of attack directly depends on the drift-rate). This effect on the load alleviation is illustrated

in Figure 13a, where the Qα-wind frequency responses of the severe-wind design at t = 50 s are compared using

different drift-rate gains. Nevertheless, the increase of K Ûz must be handled with care since it deteriorates the stability

margins as it can be seen in Figure 13b. This plot shows the effect of K Ûz on the rigid-body gain margins for the severe-

wind design at t = 50 s. Note that all values are normalised with respect to the margins of the actual severe-wind

design. It is observed that using three times the drift-rate gain generates a loss of 2.5 dB at LF-GM and 0.6 dB at

HF-GM.
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FIGURE 13 Analysis of the effect of K Ûz on the severe-wind design

This behaviour is confirmed in the high-fidelity, nonlinear simulator. Figure 14 shows a comparison of the two

augmented designs versus the baseline controller using for all the nominal flight as well as the VV05 mission wind

data.
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Looking at Figure 14, it is interesting to observe that the moderate-wind design (in dashed magenta with circle

markers) almost perfectly matches the baseline controller responses. Furthermore, in order to illustrate the impact of

the wind input on performance indicators such as Qα or drift-rate, the nonlinear response of the baseline controller

without wind is also compared. It is highlighted by comparing both baseline simulations that the structural loads and

drift-rate performance are highly influenced by the wind disturbance. Thus, since the wind characteristics change

with every mission, this comparison highlights the importance of being robust against a large range of wind profiles.

Finally, as it was expected, the severe-wind design (in solid green with cross markers) reduces the aerodynamic

loads (see Figure 14a). Particularly, the maximum Qα peak around Mach 3 is reduced by 13% with respect to the

baseline controller. Moreover, the drift-rate responses (see Figure 14b) are also significantly improved for the severe-

wind controller resulting in less lateral deviations along the flight. It is highlighted that the same benchmarking was

performed using different wind profiles, obtaining the same wind disturbance rejection capabilities shown in Figure

14.

Overall, it is observed that the structured H∞ optimiser results in better controllers (in terms of wind disturbance

rejection) when stronger wind levels are employed in the design process. Recall that the same weighting functions

were used for the three controllers presented. For a finer synthesis, theweighting functions could be tailoredaccording

to the main controller objective at each linear design point.

4.2 | Robust design augmentation

In this section, the structuredH∞ design interconnection is further augmented by taking parametric uncertainties into

account, and a new structured H∞ design is performed. The resulting controller is analysed in terms of the classical

stability margins, the structured singular value µ and nonlinear MC simulations.

4.2.1 | Problem formulation

The previous design interconnection can be further augmented by including uncertainties in the designmodel. To that

end, the nominal LTI models of the TVC actuator, delay and launch vehicle are replaced by the LFT models presented

in Section 2.3. The resultant standard H∞ interconnection is shown in Figure 15. Note that the uncertainty block ∆

is pulled out of the generalised plant P (s) and ∆ ∈ ∆with ∆ = d i ag (∆LV ,∆τ ,∆TVC ). In addition, the wind turbulence

model Gw (s) is also included in P (s).
In this case, the structured H∞ control problem consists of finding a stabilizing structured controller K that

minimises the cost function minK | | Fl (P̃ (s ,∆),K ) | |∞. It is important to highlight that in this case the control

optimisation is performed taking into account any uncertainty combination ∆ in the uncertainty set ∆.

P (s)

P̃ (s ,∆)

K

∆

e′ed′ d

u y

M (s)

Wi n Wout (s)

FIGURE 15 Robust standard H∞ interconnection



24 Navarro-Tapia et al.

4.2.2 | Robust structuredH∞ control design

The previous configuration allows to synthesize a controller K that is robust against the expected variations of the

main parameters of the system. Furthermore, as shown before, the inclusion of the wind generator model Gw (s)
guides the control optimisation to reduce the wind disturbance contribution in the presence of strong wind levels.

As aforementioned, at different phases of the atmospheric flight the design can be tailored to focus on three main

different strategies:

• Tracking performance: the control system will minimise the attitude deviations from the open-loop guidance

commands. However, this approach leads to lateral deviations from the trajectory and it does not account for

wind-induced structural loads.

• Drift performance: this design scheme aims at minimising the drift in response to wind gusts. In this case, the

control system will attempt to generate an attitude response so the normal forces are cancelled out. The

drawbacks of this approach are attitude deviations and as in the previous case, high structural loads.

• Load performance: the main objective of this approach is to minimise the wind-induced structural loads. To that

end, the vehicle will turn into wind to reduce the angle of attack α , leading to attitude deviations and also

translational dispersions with respect to the pre-programmed trajectory.

For this final design an optimal control strategy is performed, which means that the system achieves a trade-off

balance for the best global performance. In particular, a load-relief control mode is employed about the maximum

dynamic pressure region (t = 40-60 s). For the rest of the operating points, the design is focused on minimising the

tracking error while keeping the lateral deviations bounded within specifications.

The weight setup follows the same rationale presented in Section 3.2, but differs in the value of the weights,

which are tailored in an iterative process to obtained a balanced performance. In addition, they are shaped so the

nominal and dispersed stability requirements are satisfied.

As before, the structured H∞ synthesis approach is applied at different linear operating points, i.e. every 10

seconds between flight instants t = 20 s and t = 90 s. But different to the previous designs, the controller at t = 5 s is

kept the same as the baseline controller because the control design at this point focuses on the vertical flight phase

and the start of the pitch over manoeuvre, which have different control requirements.

4.2.3 | Linear analysis

In this section, the system stability is assessed via classical stability margins and the structured singular value µ.

Classical stability analysis

The system stability is traditionally analysed through a set of gain and phase margins at different crossing frequencies

(see Section 2.5). These stability margins are analysed in the frequency domain throughNichols plots at different flight

times. To that end, the open-loop system (controller, actuator and launch vehicle models) is re-arranged and broken

at the controller output in order to reduce the system to a single-input/single-output (SISO) system.

The traditional design verification and validation for the VEGA launcher defines specifications for nominal and

dispersed conditions. Firstly, the system stability using the structured robust design is analysed under nominal

conditions at the linear design points (see Figure 16a). It can be seen the structured H∞ controller provides

satisfactory margins throughout the flight satisfying the nominal stability specifications.
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FIGURE 16 Classical stability analysis for the robust structured H∞ design

The analysis for scattered configurations is performed using a Monte-Carlo (MC) approach with 1000 random

samples (note that in this case the MC is performed on the LFT model as opposed to the VEGACONTROL). Figure

16b shows the Nichols chart of the nominal system at t = 60 s and the 1000 MC random LFT samples. It can be

observed the stability degradation due to system uncertainties. In Figure 17, the main linear metrics from Table 2 are

shown along different flight times for the nominal LFT as well as for the LFT obtained using at each flight instance

the "worst-case" among all the MC runs (these cases are referred to as "MC-basedWC" in the plot). It is important to

remark that all the stability specifications are fulfilled with the new robust design.
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FIGURE 17 Worst-case stability margin assessment ( margin requirements for dispersed conditions)

The traditional validation process further extends the previous analyses by using ad-hoc test cases to complete

the coverage of the analysis, resulting in an expensive (in terms of both cost and time) procedure. Another practical

limitation of the traditional approach is the lack of guarantees in finding worst cases (WCs). This can be overcome by

complementing the MC approach by using worst-case tools such as the structured singular value µ, which allows to

identify linearWCs and also to evaluate the robustness of the design due to model uncertainties providing analytically

guaranteed bounds on robust stability (RS). Note that although there are no guarantees that the linear WCs identified

by µ will lead to nonlinear WCs, it is well-known (see references [17, 11]) that if a proper LFT modelling is employed

then µ-WCs generally represent critical nonlinear scenarios. Next, this robust analysis technique is presented and

applied to the VEGA launcher.
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Robust stability analysis

The robust stability of the VEGA launcher system defined by M (s) (see Figure 15) is assessed via the structured

singular value µ [19], which is computed as follows:

µ∆(M11) =
1

mi n∆ {σ(∆) : det (I −M11∆) = 0} with | |∆ | |∞ < 1 (36)

In this context, the system M (s) is then robustly stable ifM (s) is nominally stable and the following RS condition

is satisfied over all frequencies:

µ∆
(
M11(j ω)

)
< 1, [ ω ∈ Ò (37)

If robust stability is achieved, then there are analytical guarantees that there is no combination of uncertainties

within the range defined by the LFT model which leads to instability. It is important to mention that the structured

singular value computation is a non-polynomial hard problem. Thus, µ is computed using lower and upper bounds

(LB and UB) [19]. The upper bound provides the maximum size perturbation for which the RS condition shown in

equation 37 is violated. On the other hand, the lower bound provides the minimum size perturbation for which the

RS condition is guaranteed. Note that for this analysis, the uncertainty matrix ∆ has been modified to include a 1%

complex uncertainty to one of the TVC uncertain parameters. This mixed real-complex uncertainty structure improves

the accuracy of the µ computation [19].

Figure 18a shows the upper and lower bounds of µ computed at the same time instance as before, t = 60 s, for two

different controllers: the baseline and the last robust structured design. Looking at the baseline µ bounds (in black),

it is clear that the system is not robustly stable since there is a peak around 10 rad/s in which both upper and lower

bounds are higher than 1. It is highlighted that µ does not only output a binary solution (either the system is robust

stable or not), but also provides information in the frequency domain about how the system stability is degraded due

to system uncertainties. For instance, it is identified that the peak above 1 is centered around the HF-GM frequencies.

This information is quite valuable for synthesis, since it identifies stability problems before going for an extensiveMC-

based validation process.
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On the other hand, Figure 18a clearly shows that using the new augmented structured H∞ controller the RS

condition is satisfied at all frequencies. Looking at the upper bounds, this robust design slightly improves the RS at

low frequencies (below 1 rad/s) and critically much more at high frequencies particularly around the peak at 10 rad/s.
These improvements come at the expense of larger upper bounds around 2 rad/s (this illustrates the so-called water-
bed effect [19, 23]).

The same RS analysis is carried out at the other linear design points but only for the structured H∞ design (see

Figure 18b). For ease of visualization, only the upper bounds are shown. As before, this plot clearly shows that the

system is robustly stable throughout the atmospheric phase.

4.2.4 | Nonlinear analysis

Finally, all the individual, full augmented (wind and uncertainties) structured H∞ controllers from Section 4.2 are

scheduled, implemented and validated in the VEGACONTROL simulator. To evaluate the performance and robustness

of this design, four MC campaigns of 500 runs are performed. For each run, the same nominal VEGA VV05 flight

trajectory is used but the system parameters are all sampled randomly. Each of the four MC campaign uses the same

parameters’ scattering but a different wind profile (among them, the estimated wind encountered in VEGA VV05

mission – which was also used in the previous figures/comparisons). Note that the four wind profiles have been

extracted from real measurements taken at the VEGA launch site (French Guyana) and cover strong and moderate

wind gusts at different altitudes. The same four MC set-ups are applied also to the VEGA VV05 baseline controller.

The outcomes of this MC campaign for both controllers are depicted side-by-side in Figure 19 (on the left for

the baseline and on the right for the augmented structured design). For each, the total 2000 randomly sampled MC

responses are shown for the aerodynamic load Qα (top plots) and the TVC actuator deflections (bottom plots). In

order to have a reference, the nominal simulations using the VEGA VV05 mission wind are highlighted in darker lines.

Looking at theQα responses, it can be observed that the higherQα peaks (aroundMach 1.5, 2.5 and 2.9) are reduced

for the structured H∞ design. As for the TVC actuation, although less visible, the responses using the structured H∞

controller require slightly less TVC deflections to handle the different strong wind gusts encountered.

In order to quantitatively compare both designs, a set of performance indicators (such as actuation, attitude

error, drift or aerodynamic load performance) are analysed using two different metrics: the ∞-norm and the 2-norm.

The former is equivalent to the maximum value taken by the assessed variable, whereas the latter accounts for the

energy of the indicator. Figure 20 shows the average of those two norms normalised with respect to the baseline

controller values. Overall, it can be seen that the augmented structured H∞ design improves the performance for

all the indicator/norm pairs. This robust controller reduces the Qα peaks by 10%, the energy of the attitude error

also by 10% in both axes and the drift-rate performance is significantly improved by 20% in both ∞- and 2-norms.

Furthermore, the average TVC deflection peaks are reduced by 5%.

These results highlight that this robust design is able to tackle different competing trade-off objectives at the

same time and provides a balanced solution for a better global performance. Recall that this is achieved by only

optimizing the rigid-body controller gains (the bending filters are kept the same as the baseline). In this regard, this

shows there is still room for further improvement when also considering the bending filters’ design in an integrated

design optimization framework.
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5 | CONCLUSION

This article describes a systematic robust control synthesis framework for the atmospheric control system design of

a launch vehicle. In this work, the structured H∞ technique is applied to the actual VEGA VV05 mission data for

the design of the rigid-body controller. The main aim is to highlight the design and analysis capabilities of a more

methodological framework with respect to the classical methods.

Firstly, with the objective of building industrial confidence in this synthesis framework, it is shown that the

structured H∞ control problem can be formulated to recover the classically designed VEGA VV05 mission

rigid-body baseline controller, but in a more methodological manner. This legacy recovery exercise is based on a

good understanding of the constraints introduced by the controller structure into the system. This is especially

important since it facilitates the weighting function selection process.

In order to explore the potential for improvement over the traditional state-of-practice, the design

interconnection is augmented by including a wind turbulence Dryden filter and subsequently also uncertain LFT

models. The former provides the control optimiser with information about the wind levels and the frequency

content of the wind disturbance. In this regard, it is highlighted that the use of strong wind levels for design

contributes to improve the wind disturbance rejection performance for this mission. Moreover, the latter

augmentation allows to perform the design against the expected variations of the system parameters.

Using this augmented configuration, the linear structured H∞ controllers are synthesized and then analysed in

terms of the traditional verification and validation process based on stability margins and nonlinear MC simulations.

The system has also been analysed using the structured singular value µ, which provides analytically guaranteed

bounds on robust stability. This analysis tool provides a direct connection to design, since it gives a good insight on

the robustness of the system without applying an extensive MC validation process.

The final, scheduled (augmented structured H∞) controller design provides robust stability throughout the flight

envelope and improved robust performance with respect to the baseline controller. These results highlight the room

for improvement that can be achieved by increasing the information provided to the control optimisation. In

addition, they also show the capability of the synthesis framework to tackle the direct trade-off of robustness versus

performance using a more comprehensive methodology.
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