32 research outputs found

    Predicting Hemolytic Uremic Syndrome and Renal Replacement Therapy in Shiga Toxin-producing Escherichia coli-infected Children.

    Get PDF
    BACKGROUND: Shiga toxin-producing Escherichia coli (STEC) infections are leading causes of pediatric acute renal failure. Identifying hemolytic uremic syndrome (HUS) risk factors is needed to guide care. METHODS: We conducted a multicenter, historical cohort study to identify features associated with development of HUS (primary outcome) and need for renal replacement therapy (RRT) (secondary outcome) in STEC-infected children without HUS at initial presentation. Children agedeligible. RESULTS: Of 927 STEC-infected children, 41 (4.4%) had HUS at presentation; of the remaining 886, 126 (14.2%) developed HUS. Predictors (all shown as odds ratio [OR] with 95% confidence interval [CI]) of HUS included younger age (0.77 [.69-.85] per year), leukocyte count ≥13.0 × 103/μL (2.54 [1.42-4.54]), higher hematocrit (1.83 [1.21-2.77] per 5% increase) and serum creatinine (10.82 [1.49-78.69] per 1 mg/dL increase), platelet count \u3c250 \u3e× 103/μL (1.92 [1.02-3.60]), lower serum sodium (1.12 [1.02-1.23 per 1 mmol/L decrease), and intravenous fluid administration initiated ≥4 days following diarrhea onset (2.50 [1.14-5.46]). A longer interval from diarrhea onset to index visit was associated with reduced HUS risk (OR, 0.70 [95% CI, .54-.90]). RRT predictors (all shown as OR [95% CI]) included female sex (2.27 [1.14-4.50]), younger age (0.83 [.74-.92] per year), lower serum sodium (1.15 [1.04-1.27] per mmol/L decrease), higher leukocyte count ≥13.0 × 103/μL (2.35 [1.17-4.72]) and creatinine (7.75 [1.20-50.16] per 1 mg/dL increase) concentrations, and initial intravenous fluid administration ≥4 days following diarrhea onset (2.71 [1.18-6.21]). CONCLUSIONS: The complex nature of STEC infection renders predicting its course a challenge. Risk factors we identified highlight the importance of avoiding dehydration and performing close clinical and laboratory monitoring

    Development and Validation of the Phoenix Criteria for Pediatric Sepsis and Septic Shock

    Get PDF
    ImportanceThe Society of Critical Care Medicine Pediatric Sepsis Definition Task Force sought to develop and validate new clinical criteria for pediatric sepsis and septic shock using measures of organ dysfunction through a data-driven approach.ObjectiveTo derive and validate novel criteria for pediatric sepsis and septic shock across differently resourced settings.Design, Setting, and ParticipantsMulticenter, international, retrospective cohort study in 10 health systems in the US, Colombia, Bangladesh, China, and Kenya, 3 of which were used as external validation sites. Data were collected from emergency and inpatient encounters for children (aged &amp;amp;lt;18 years) from 2010 to 2019: 3 049 699 in the development (including derivation and internal validation) set and 581 317 in the external validation set.ExposureStacked regression models to predict mortality in children with suspected infection were derived and validated using the best-performing organ dysfunction subscores from 8 existing scores. The final model was then translated into an integer-based score used to establish binary criteria for sepsis and septic shock.Main Outcomes and MeasuresThe primary outcome for all analyses was in-hospital mortality. Model- and integer-based score performance measures included the area under the precision recall curve (AUPRC; primary) and area under the receiver operating characteristic curve (AUROC; secondary). For binary criteria, primary performance measures were positive predictive value and sensitivity.ResultsAmong the 172 984 children with suspected infection in the first 24 hours (development set; 1.2% mortality), a 4-organ-system model performed best. The integer version of that model, the Phoenix Sepsis Score, had AUPRCs of 0.23 to 0.38 (95% CI range, 0.20-0.39) and AUROCs of 0.71 to 0.92 (95% CI range, 0.70-0.92) to predict mortality in the validation sets. Using a Phoenix Sepsis Score of 2 points or higher in children with suspected infection as criteria for sepsis and sepsis plus 1 or more cardiovascular point as criteria for septic shock resulted in a higher positive predictive value and higher or similar sensitivity compared with the 2005 International Pediatric Sepsis Consensus Conference (IPSCC) criteria across differently resourced settings.Conclusions and RelevanceThe novel Phoenix sepsis criteria, which were derived and validated using data from higher- and lower-resource settings, had improved performance for the diagnosis of pediatric sepsis and septic shock compared with the existing IPSCC criteria.</jats:sec

    International Consensus Criteria for Pediatric Sepsis and Septic Shock.

    Get PDF
    ImportanceSepsis is a leading cause of death among children worldwide. Current pediatric-specific criteria for sepsis were published in 2005 based on expert opinion. In 2016, the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) defined sepsis as life-threatening organ dysfunction caused by a dysregulated host response to infection, but it excluded children.ObjectiveTo update and evaluate criteria for sepsis and septic shock in children.Evidence reviewThe Society of Critical Care Medicine (SCCM) convened a task force of 35 pediatric experts in critical care, emergency medicine, infectious diseases, general pediatrics, nursing, public health, and neonatology from 6 continents. Using evidence from an international survey, systematic review and meta-analysis, and a new organ dysfunction score developed based on more than 3 million electronic health record encounters from 10 sites on 4 continents, a modified Delphi consensus process was employed to develop criteria.FindingsBased on survey data, most pediatric clinicians used sepsis to refer to infection with life-threatening organ dysfunction, which differed from prior pediatric sepsis criteria that used systemic inflammatory response syndrome (SIRS) criteria, which have poor predictive properties, and included the redundant term, severe sepsis. The SCCM task force recommends that sepsis in children be identified by a Phoenix Sepsis Score of at least 2 points in children with suspected infection, which indicates potentially life-threatening dysfunction of the respiratory, cardiovascular, coagulation, and/or neurological systems. Children with a Phoenix Sepsis Score of at least 2 points had in-hospital mortality of 7.1% in higher-resource settings and 28.5% in lower-resource settings, more than 8 times that of children with suspected infection not meeting these criteria. Mortality was higher in children who had organ dysfunction in at least 1 of 4-respiratory, cardiovascular, coagulation, and/or neurological-organ systems that was not the primary site of infection. Septic shock was defined as children with sepsis who had cardiovascular dysfunction, indicated by at least 1 cardiovascular point in the Phoenix Sepsis Score, which included severe hypotension for age, blood lactate exceeding 5 mmol/L, or need for vasoactive medication. Children with septic shock had an in-hospital mortality rate of 10.8% and 33.5% in higher- and lower-resource settings, respectively.Conclusions and relevanceThe Phoenix sepsis criteria for sepsis and septic shock in children were derived and validated by the international SCCM Pediatric Sepsis Definition Task Force using a large international database and survey, systematic review and meta-analysis, and modified Delphi consensus approach. A Phoenix Sepsis Score of at least 2 identified potentially life-threatening organ dysfunction in children younger than 18 years with infection, and its use has the potential to improve clinical care, epidemiological assessment, and research in pediatric sepsis and septic shock around the world

    Paediatric patient stratification in the emergency department

    Get PDF

    CTLA-4 Differentially Regulates the Immunological Synapse in CD4 T Cell Subsets

    No full text

    Sepsis Bundles and Mortality Among Pediatric Patients

    No full text

    Reply

    No full text

    Hypofibrinogenemia Is Associated With Poor Outcome and Secondary Hemophagocytic Lymphohistiocytosis/Macrophage Activation Syndrome in Pediatric Severe Sepsis*

    No full text
    ObjectivesSome children with sepsis exhibit a sustained hyperinflammatory response that can trigger secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome. Although hypofibrinogenemia is a shared feature of sepsis and hemophagocytic lymphohistiocytosis, there are no data about fibrinogen as a biomarker to identify children with sepsis/secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome overlap. We hypothesized that hypofibrinogenemia is associated with poor outcomes and secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome and has utility as a screening biomarker for this sepsis phenotype.DesignA retrospective cohort study of patients less than or equal to 21 years treated for severe sepsis from January 2012 to December 2014.SettingEmergency department and PICU at a single academic children's hospital.PatientsConsecutive patients with greater than or equal to one episode of hypofibrinogenemia (serum fibrinogen &lt; 150 mg/dL) within 7 days of sepsis were compared with a random sample of patients without hypofibrinogenemia using an a priori sample size target of 190. Thirty-eight patients with hypofibrinogenemia were compared with 154 without hypofibrinogenemia.InterventionsNone.Measurements and main resultsThe primary outcome was "complicated course" (composite of 28-d mortality or ≥ two organ failures at 7 d). Secondary outcomes were 28-day mortality and fulfillment of diagnostic criteria for secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome. We used Wilcoxon rank-sum, Fisher exact test, and multivariable logistic regression to compare patients with versus without hypofibrinogenemia. Patients with hypofibrinogenemia were more likely to have a complicated course (73.7% vs 29.2%; p &lt; 0.001), 28-day mortality (26.3% vs 7.1%, p = 0.002), and meet diagnostic criteria for secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome (21.1% vs 1.3%; p &lt; 0.001). After controlling for confounders, hypofibrinogenemia remained associated with complicated course (adjusted odds ratio, 8.8; 95% CI, 3.5-22.4), mortality (adjusted odds ratio, 6.0; 95% CI, 2.0-18.1), and secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome (adjusted odds ratio, 27.6; 95% CI, 4.4-173).ConclusionsHypofibrinogenemia was independently associated with poor outcome and secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome in pediatric sepsis. Measurement of fibrinogen may provide a pragmatic biomarker to identify children with possible sepsis/secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome overlap for whom further diagnostic testing and consideration of adjunctive immunomodulatory therapies should be considered
    corecore