248 research outputs found

    A comparison of the neutron detection efficiency and response characteristics of two pixelated PSD-capable organic scintillator detectors with different photo-detection readout methods

    Full text link
    We characterize the performance of two pixelated neutron detectors: a PMT-based array that utilizes Anger logic for pixel identification and a SiPM-based array that employs individual pixel readout. The SiPM-based array offers improved performance over the previously developed PMT-based detector both in terms of uniformity and neutron detection efficiency. Each detector array uses PSD-capable plastic scintillator as a detection medium. We describe the calibration and neutron efficiency measurement of both detectors using a 137^{137}Cs source for energy calibration and a 252^{252}Cf source for calibration of the neutron response. We find that the intrinsic neutron detection efficiency of the SiPM-based array is (30.2 ± 1.730.2 \ \pm \ 1.7)\%, which is almost twice that of the PMT-based array, which we measure to be (16.9±0.216.9 \pm 0.2)\%

    Radiogenic and Muon-Induced Backgrounds in the LUX Dark Matter Detector

    Get PDF
    The Large Underground Xenon (LUX) dark matter experiment aims to detect rare low-energy interactions from Weakly Interacting Massive Particles (WIMPs). The radiogenic backgrounds in the LUX detector have been measured and compared with Monte Carlo simulation. Measurements of LUX high-energy data have provided direct constraints on all background sources contributing to the background model. The expected background rate from the background model for the 85.3 day WIMP search run is (2.6±0.2stat±0.4sys)×10−3(2.6\pm0.2_{\textrm{stat}}\pm0.4_{\textrm{sys}})\times10^{-3}~events~keVee−1_{ee}^{-1}~kg−1^{-1}~day−1^{-1} in a 118~kg fiducial volume. The observed background rate is (3.6±0.4stat)×10−3(3.6\pm0.4_{\textrm{stat}})\times10^{-3}~events~keVee−1_{ee}^{-1}~kg−1^{-1}~day−1^{-1}, consistent with model projections. The expectation for the radiogenic background in a subsequent one-year run is presented.Comment: 18 pages, 12 figures / 17 images, submitted to Astropart. Phy

    A Review of NEST Models, and Their Application to Improvement of Particle Identification in Liquid Xenon Experiments

    Full text link
    Liquid xenon is a leader in rare-event physics searches. Accurate modeling of charge and light production is key for simulating signals and backgrounds in this medium. The signal- and background-production models in the Noble Element Simulation Technique (NEST) are presented. NEST is a simulation toolkit based on experimental data, fit using simple, empirical formulae for the average charge and light yields and their variations. NEST also simulates the final scintillation pulses and exhibits the correct energy resolution as a function of the particle type, the energy, and the electric fields. After vetting of NEST against raw data, with several specific examples pulled from XENON, ZEPLIN, LUX/LZ, and PandaX, we interpolate and extrapolate its models to draw new conclusions on the properties of future detectors (e.g., XLZD's), in terms of the best possible discrimination of electron(ic) recoil backgrounds from a potential nuclear recoil signal, especially WIMP dark matter. We discover that the oft-quoted value of 99.5% discrimination is overly conservative, demonstrating that another order of magnitude improvement (99.95% discrimination) can be achieved with a high photon detection efficiency (g1 ~ 15-20%) at reasonably achievable drift fields of 200-350 V/cm.Comment: 24 Pages, 6 Tables, 15 Figures, and 15 Equation
    • …
    corecore