15 research outputs found

    HPLC-DAD/TOF-MS Chemical Compounds Analysis and Evaluation of Antibacterial Activity of Aristolochia longa Root Extracts

    Get PDF
    The present study aimed to determine the phenolic compounds of Arislolochia Ion& root extracts and to evaluate their antibacterial activities on multiresistant strains. Phytochemical analysis revealed the presence of flavonoids, tannins, terpenoids, and alkaloids. The HPLC-DAD analysis of A. longa extracts showed the presence of several major bioactive compounds such as ferulic acid, 4-hydroxycinnamic acid, citric acid, and quinic acid. The agar diffusion method was used for the sensitivity test, while minimal inhibitory concentration (MIC) and minimal bactericidal concentration values were determined by microdilution assay. Different tests were carried out on 3 clinical multiresistant strains and 3 reference strains. The diameter of inhibition of Staphylococcus aureus ATCC 25923 induced by the ethyl acetate fraction at 200 mg/mL was 25 +/- 1 mm. Moreover, Escherichia coli ATCC 29522 showed a great sensitivity toward all the concentrations tested. The MICs of the active extracts vary between 12.5 and 100 mg/mL with a bacteriostatic effect on Pseudomonas aemginosa ATCC 27853, Enterococcus faecalis, and S. aureus ATCC 25923.Peer reviewe

    Chemical Compounds of Berry-Derived Polyphenols and Their Effects on Gut Microbiota, Inflammation, and Cancer

    Get PDF
    Berry-derived polyphenols are bioactive compounds synthesized and secreted by several berry fruits. These polyphenols feature a diversity of chemical compounds, including phenolic acids and flavonoids. Here, we report the beneficial health effects of berry-derived polyphenols and their therapeutical application on gut-microbiota-related diseases, including inflammation and cancer. Pharmacokinetic investigations have confirmed the absorption, availability, and metabolism of berry-derived polyphenols. In vitro and in vivo tests, as well as clinical trials, showed that berry-derived polyphenols can positively modulate the gut microbiota, inhibiting inflammation and cancer development. Indeed, these compounds inhibit the growth of pathogenic bacteria and also promote beneficial bacteria. Moreover, berry-derived polyphenols exhibit therapeutic effects against different gut-microbiota-related disorders such as inflammation, cancer, and metabolic disorders. Moreover, these polyphenols can manage the inflammation via various mechanisms, in particular the inhibition of the transcriptional factor Nf-κB. Berry-derived polyphenols have also shown remarkable effects on different types of cancer, including colorectal, breast, esophageal, and prostate cancer. Moreover, certain metabolic disorders such as diabetes and atherosclerosis were also managed by berry-derived polyphenols through different mechanisms. These data showed that polyphenols from berries are a promising source of bioactive compounds capable of modulating the intestinal microbiota, and therefore managing cancer and associated metabolic diseases. However, further investigations should be carried out to determine the mechanisms of action of berry-derived polyphenol bioactive compounds to validate their safety and examinate their clinical uses

    Natural bioactive compounds targeting DNA methyltransferase enzymes in cancer: Mechanisms insights and efficiencies

    Get PDF
    The regulation of gene expression is fundamental to health and life and is essentially carried out at the promoter region of the DNA of each gene. Depending on the molecular context, this region may be accessible or non-accessible (possibility of integration of RNA polymerase or not at this region). Among enzymes that control this process, DNA methyltransferase enzymes (DNMTs), are responsible for DNA demethylation at the CpG islands, particularly at the promoter regions, to regulate transcription. The aberrant activity of these enzymes, i.e. their abnormal expression or activity, can result in the repression or overactivation of gene expression. Consequently, this can generate cellular dysregulation leading to instability and tumor development. Several reports highlighted the involvement of DNMTs in human cancers. The inhibition or activation of DNMTs is a promising therapeutic approach in many human cancers. In the present work, we provide a comprehensive and critical summary of natural bioactive molecules as primary inhibitors of DNMTs in human cancers. The active compounds hold the potential to be developed as anti-cancer epidrugs targeting DNMTs

    Survey and Diagnostic Challenges after Transmission-Stop: Confirming Elimination of Schistosomiasis haematobium in Morocco

    No full text
    Clinical cases of Moroccan residents have been recorded since 2004, indicating successful interruption of transmission of S. haematobium infection at national level. The first national survey initiated in 2009 for Schistosomiasis haematobium among children born after 2004, applied diagnostic test was the HAMA-EITB, based on the Western blot technology, and molecular malacological diagnostic tools clearly confirm transmission stop. In 2015, a recent, small survey utilizing an HAI, ELISA tests and an ultrasensitive antigen test, FTCUP CAA, in a group of individual with a past history of infection. However, obviously follow-up surveys to prevent reemergency and for certification of the schistosomiasis elimination require vigilant diagnosis strategies. Here we discuss diagnosis story line in the national laboratory and challenges based on the available tools in relation to their clinical parameters (sensitivity/specificity; Sn/Sp), practicability and associated costs. When transmission stop has been achieved, survey cost and speed are likely to benefit from cost effective pooling strategies and ultrasensitive assays indicating active infection in all potential risk groups. Similarly molecular pooling strategies to monitor infections in the snail vectors

    Advances in Dietary Phenolic Compounds to Improve Chemosensitivity of Anticancer Drugs

    No full text
    Despite the significant advances and mechanistic understanding of tumor processes, therapeutic agents against different types of cancer still have a high rate of recurrence associated with the development of resistance by tumor cells. This chemoresistance involves several mechanisms, including the programming of glucose metabolism, mitochondrial damage, and lysosome dysfunction. However, combining several anticancer agents can decrease resistance and increase therapeutic efficacy. Furthermore, this treatment can improve the effectiveness of chemotherapy. This work focuses on the recent advances in using natural bioactive molecules derived from phenolic compounds isolated from medicinal plants to sensitize cancer cells towards chemotherapeutic agents and their application in combination with conventional anticancer drugs. Dietary phenolic compounds such as resveratrol, gallic acid, caffeic acid, rosmarinic acid, sinapic acid, and curcumin exhibit remarkable anticancer activities through sub-cellular, cellular, and molecular mechanisms. These compounds have recently revealed their capacity to increase the sensitivity of different human cancers to the used chemotherapeutic drugs. Moreover, they can increase the effectiveness and improve the therapeutic index of some used chemotherapeutic agents. The involved mechanisms are complex and stochastic, and involve different signaling pathways in cancer checkpoints, including reactive oxygen species signaling pathways in mitochondria, autophagy-related pathways, proteasome oncogene degradation, and epigenetic perturbations

    Risk Factors Associated with Leishmaniasis in the Most Affected Provinces by Leishmania infantum in Morocco

    No full text
    Background. Human leishmaniasis, both visceral and cutaneous, has been reported in Morocco for centuries and constitutes a serious public health problem. However, the evolution of this pathology depends on several factors such as ecological, socioeconomic, and climatic conditions. The risk study of the affected foci is of great value for the control and surveillance of this endemic disease, especially in the provinces where Leishmania infantum predominates. Methods. This study concerned nine provinces located in the extreme and central north of Morocco (Taounate, Taza, Chefchaouen, Al Hoceima, Larache, Tétouane, Tanger-Assilah, M’diq-Fnideq, and Fahs-Anjra Provinces). In this work, leishmaniasis cases (VL and CL) were subjected to an epidemiological study which was performed using a linear regression model to identify the impact as well as the interaction between all predictor variables on the distribution of leishmaniasis in this region. Results. During the period 1997–2018, a total of 6 128 cases of VL and CL were recorded in the study area. Our results showed that among demographic factors studied, urbanization showed significance for both cutaneous and visceral forms (P<0.05). Regarding the environmental factors, the humidity and the altitude were significant for both CL and VL (P<0.05), while the temperature and the normalized difference vegetation index (NDVI) showed a significance only for VL. Moreover, trends in season of occurrence revealed that wet season (October to April) had a higher incidence of leishmaniasis compared to the dry season (May to September) specifically for CL. As for socioeconomic factors, poverty was the only factor that influences the spread of VL. Finally, the distance from endemic foci showed significance for both VL and LC (P<0.05). Conclusion. Our study revealed that the risk factor associated with cutaneous and visceral leishmaniasis in northern Morocco could help in the establishment of a prediction program

    Mechanisms, Anti-Quorum-Sensing Actions, and Clinical Trials of Medicinal Plant Bioactive Compounds against Bacteria: A Comprehensive Review

    No full text
    Bacterial strains have developed an ability to resist antibiotics via numerous mechanisms. Recently, researchers conducted several studies to identify natural bioactive compounds, particularly secondary metabolites of medicinal plants, such as terpenoids, flavonoids, and phenolic acids, as antibacterial agents. These molecules exert several mechanisms of action at different structural, cellular, and molecular levels, which could make them candidates or lead compounds for developing natural antibiotics. Research findings revealed that these bioactive compounds can inhibit the synthesis of DNA and proteins, block oxidative respiration, increase membrane permeability, and decrease membrane integrity. Furthermore, recent investigations showed that some bacterial strains resist these different mechanisms of antibacterial agents. Researchers demonstrated that this resistance to antibiotics is linked to a microbial cell-to-cell communication system called quorum sensing (QS). Consequently, inhibition of QS or quorum quenching is a promising strategy to not only overcome the resistance problems but also to treat infections. In this respect, various bioactive molecules, including terpenoids, flavonoids, and phenolic acids, exhibit numerous anti-QS mechanisms via the inhibition of auto-inducer releases, sequestration of QS-mediated molecules, and deregulation of QS gene expression. However, clinical applications of these molecules have not been fully covered, which limits their use against infectious diseases. Accordingly, the aim of the present work was to discuss the role of the QS system in bacteria and its involvement in virulence and resistance to antibiotics. In addition, the present review summarizes the most recent and relevant literature pertaining to the anti-quorum sensing of secondary metabolites and its relationship to antibacterial activity

    Health Benefits and Pharmacological Properties of Carvone

    No full text
    Carvone is a monoterpene ketone contained in the essential oils of several aromatic and medicinal plants of the Lamiaceae and Asteraceae families. From aromatic plants, this monoterpene is secreted at different concentrations depending on the species, the parts used, and the extraction methods. Currently, pharmacological investigations showed that carvone exhibits multiple pharmacological properties such as antibacterial, antifungal, antiparasitic, antineuraminidase, antioxidant, anti-inflammatory, and anticancer activities. These studies were carried out in vitro and in vivo and involved a great deal of knowledge on the mechanisms of action. Indeed, the antimicrobial effects are related to the action of carvone on the cell membrane and to ultrastructural changes, while the anti-inflammatory, antidiabetic, and anticancer effects involve the action on cellular and molecular targets such as inducing of apoptosis, autophagy, and senescence. With its multiple mechanisms, carvone can be considered as natural compounds to develop therapeutic drugs. However, other investigations regarding its precise mechanisms of action as well as its acute and chronic toxicities are needed to validate its applications. Therefore, this review discusses the principal studies investigating the pharmacological properties of carvone, and the mechanism of action underlying some of these properties. Moreover, further investigations of major pharmacodynamic and pharmacokinetic studies were also suggested

    Natural Bioactive Compounds Targeting Epigenetic Pathways in Cancer: A Review on Alkaloids, Terpenoids, Quinones, and Isothiocyanates

    No full text
    Cancer is one of the most complex and systemic diseases affecting the health of mankind, causing major deaths with a significant increase. This pathology is caused by several risk factors, of which genetic disturbances constitute the major elements, which not only initiate tumor transformation but also epigenetic disturbances which are linked to it and which can induce transcriptional instability. Indeed, the involvement of epigenetic disturbances in cancer has been the subject of correlations today, in addition to the use of drugs that operate specifically on different epigenetic pathways. Natural molecules, especially those isolated from medicinal plants, have shown anticancer effects linked to mechanisms of action. The objective of this review is to explore the anticancer effects of alkaloids, terpenoids, quinones, and isothiocyanates

    The Role of Epigenetic Modifications in Human Cancers and the Use of Natural Compounds as Epidrugs: Mechanistic Pathways and Pharmacodynamic Actions

    No full text
    Cancer is a complex disease resulting from the genetic and epigenetic disruption of normal cells. The mechanistic understanding of the pathways involved in tumor transformation has implicated a priori predominance of epigenetic perturbations and a posteriori genetic instability. In this work, we aimed to explain the mechanistic involvement of epigenetic pathways in the cancer process, as well as the abilities of natural bioactive compounds isolated from medicinal plants (flavonoids, phenolic acids, stilbenes, and ketones) to specifically target the epigenome of tumor cells. The molecular events leading to transformation, angiogenesis, and dissemination are often complex, stochastic, and take turns. On the other hand, the decisive advances in genomics, epigenomics, transcriptomics, and proteomics have allowed, in recent years, for the mechanistic decryption of the molecular pathways of the cancerization process. This could explain the possibility of specifically targeting this or that mechanism leading to cancerization. With the plasticity and flexibility of epigenetic modifications, some studies have started the pharmacological screening of natural substances against different epigenetic pathways (DNA methylation, histone acetylation, histone methylation, and chromatin remodeling) to restore the cellular memory lost during tumor transformation. These substances can inhibit DNMTs, modify chromatin remodeling, and adjust histone modifications in favor of pre-established cell identity by the differentiation program. Epidrugs are molecules that target the epigenome program and can therefore restore cell memory in cancerous diseases. Natural products isolated from medicinal plants such as flavonoids and phenolic acids have shown their ability to exhibit several actions on epigenetic modifiers, such as the inhibition of DNMT, HMT, and HAT. The mechanisms of these substances are specific and pleiotropic and can sometimes be stochastic, and their use as anticancer epidrugs is currently a remarkable avenue in the fight against human cancers
    corecore